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ABSTRACT 

The selective extraction and accumulation of specific deoxyribonucleic acid (DNA) 

fragments is required for targeted nucleic acid analysis in order to minimize interferences from 

samples with abundant heterogeneous sequences. In addition, it is essential to isolate and 

preserve nucleic acid from biological sample containing numerous compounds such as 

endonucleases prior to sample analysis. Very recently, ionic liquid (IL) and magnetic ionic liquid 

(MIL) based materials have shown significant promise in the area of biological sample 

preparation and separation. In this thesis, various types of ILs and MILs are exhaustively 

descripted and utilized for two applications: 1) sequence-specific extraction of DNA and 2) RNA 

preservation.  

Functionalized oligonucleotide probes named as ion-tagged oligonucleotides (ITOs) and 

disubstituted ion-tagged oligonucleotides (DTOs) that hybridize with complementary DNA 

targets can be subsequently captured by a hydrophobic MIL support. The ITO- and DTO-MIL 

system is investigated for sequence-specific extraction of DNA in a relatively low concentration 

within multiple sample matrices such as blood and plasma. This particle- and aggregation-free 

extraction method is highly potential and beneficial for analysis based on microfluidic devices.  

In addition, RNA samples obtained from yeast cells can be extracted and preserved by 

several MILs simultaneously. RNA remains the high quantity and structural integrity within 

MILs at room temperature. Moreover, specific MILs can be used to reduce ribonuclease A 

(RNase A) degradation of RNA. This RNA preservation method reveals multiple advantages 

including energy-saving and equipment-independent which makes it applicable to in-field RNA 

sample preparation. 
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CHAPTER 1.    GENERAL INTRODUCTION 

1.1 A Brief Introduction of Ionic Liquids and Magnetic Ionic Liquids 

Following the discovery of ionic liquids (ILs) over a century ago, IL-based materials 

have been shown to exhibit encouraging advance in chemical sciences including nucleic acid 

analysis.1,2 ILs are organic molten salts that possess melting points at or below 100 °C. Due to 

their tunable cation and anion structures,3,4 ILs possess a number of advantageous 

physicochemical properties including relatively low vapor pressure at ambient temperatures, 

high thermal stability, wide electrochemical window, and different solvation properties.5 

Conventional ILs such as 1-alkyl-3-methylimidazolium hexafluorophosphate ([CnMIM+][PF6
-]) 

or the same cation paired with bis[(trifluoromethyl)sulfonyl]imide ([NTf2
-]) anion are widely 

used as extraction solvents in various liquid phase microextraction.6 Recently, ILs have been 

explored as solvents in nucleic acid applications based on their ability to interact with a variety 

of biomolecules.7,8 For instance, Wang and coworkers took the advantage of the 1-butyl-3-

methylimidazolium hexafluorophosphate ([BMIM+][PF6
−]) IL to extract deoxyribonucleic acid 

(DNA) from aqueous solution.1 In a more recent study, Freire and co-workers developed a 

nucleic acid preservation method in which ribonucleic acid (RNA) was extracted and preserved 

by cholinium L-lysinate ([Ch][Lys]) IL.10 

Magnetic ionic liquids (MILs) are a subclass of ILs that incorporate paramagnetic centers 

in their chemical structures. MILs also have been the subject of intensified interest in numerous 

analytical applications due to their similar physicochemical properties to conventional ILs as 

well as the strong response to external magnetic fields.11,12 For instance, our group investigated 

the MIL applications in performing DNA extraction,11 supporting polymerase chain reaction 

(PCR),13 and preserving DNA from degradation.14 The development of MILs for nucleic acid 
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analysis has aroused great research interest due to their properties outperforming conventional 

materials. Unlike ferrofluids that are prone to aggregation and sedimentation, MILs exist as neat 

magnetic solvents. MILs also exhibit low volatility and circumventing the need for stabilizing 

organic solvents that are often employed in ferrofluids to prevent particle agglomeration.15 Some 

of the common chemical structures of ILs and MILs can be seen in Figure 1.1.

 

Figure 1.1 Common cations and anions used in ILs and MILs. 

 

1.2 A Brief Introduction of Nucleic Acid Analysis 

Nucleic acids are biopolymers that have fundamental implications on the biochemical 

processes of every living organism. DNA and RNA have the unique ability to pair with its 

complementary sequence by Watson–Crick hydrogen bonding, which can be widely exploited to 

construct DNA-material conjugates for chemical, biological, and medical applications. The 

applications of nucleic acid analysis have included DNA-based therapeutics,16 identification of 

DNA biomarkers in blood,17 and understanding gene-disease relationships.18  

Although numbers of technologies have been developed for nucleic acid sequencing and 

analysis, the detection of specific DNA sequences remains a significant challenge due to the 
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interfering background signal in bioanalytical assays caused by untargeted sequences.19,20 

Moreover, nucleic acid in biological samples such as blood and plasma may contain numerous 

compounds including proteins and lipids. Biomolecular techniques such as quantitative 

polymerase chain reaction (qPCR), quantitative reverse transcription polymerase chain reaction 

(qRT-PCR), and Northern Blot analysis require sufficiently pure analytes to prevent the 

inefficiency of analysis.21-24 In certain conditions, preservation steps before in-lab analysis are 

critical for nucleic acid collected in the field.25 Conventional techniques such as lyophilization, 

formalin fixed paraffin-embedded tissues (FFPE), and diethylpyrocarbonate (DEPC) 

pretreatment suffer from drawbacks including the requirements of specialized equipment, 

multiple tedious steps, or a high amount of energy.26-30  

 

Figure 1.2 Schematic of a LLE procedure using ILs or MILs. 

①Nucleic acid sample ②Extraction ③Washing  ④Desorption/recovery 

Nucleic acid 
(target analyte) 

Protein 

Aqueous solution 

Extraction phase 
(ILs/MILs) 

Desorption/recovery 
solution 



www.manaraa.com

4 

 

In order to ameliorate the conventional DNA or RNA analysis methods, several MILs 

and ILs have been studied in plenty of fields including genomic analysis, pharmaceutical 

industry, and microextraction. ILs and MILs can be highly beneficial for liquid-liquid extraction 

(LLE) with advantages such as high efficiency and simple operation. A general process of LLE 

can be seen in Figure 1.2.  

1.3 Organization of the Thesis 

The main goal of this thesis is to extend the use of novel ILs and MILs to nucleic acid 

sample preparation and extraction areas, and in combination with detection techniques including 

liquid chromatography, qPCR, and gel electrophoresis. According to this objective, the thesis has 

been divided into the following chapters: 

Chapter 2 describes a sequence-specific DNA extraction method by incorporating ion-

tagged oligonucleotide (ITO) or disubstituted ion-tagged oligonucleotide (DTO) probes with 

MIL supports. The ITO or DTO probes can be customized with different oligonucleotides to 

capture specific target sequences. This “particle-free” method reveals an effective extraction by 

taking the advantage of the high loading efficiency between probes and supports. A series of ITO 

and DTO probes was synthesized through thiol-ene “click” reactions and investigated for their 

target-capture capabilities. In addition, a commercial approach using biotinylated probes and 

magnetic beads was studied as a comparison.  

Chapter 3 describes the ITO/DTO-MIL system with advanced ITO/DTO probes, MIL 

supports, and optimized extraction conditions. Various combinations between probes and 

supports were tested and compared. Furthermore, this sequence-specific DNA extraction method 

was applied to several complex sample matrices including diluted plasma and diluted blood. The 

femtomolar level of target DNA sequences was successfully isolated and preconcentrated from a 

biological sample containing high amounts of proteins and background DNA. 
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Chapter 4 describes a combined approach of extraction and preservation of RNA by 

MIL solvents. Yeast total RNA can be extracted and preserved by different MILs in a single-step 

procedure. RNA preserved by MILs remained the structural integrity after a 15 day storage 

period at room temperature. The ribonuclease A (RNase A) degradation of RNA can be 

significantly reduced within a few of MILs. Moreover, the partitioning of RNA and MILs was 

investigated to elucidate the preservation mechanism and the recovery efficiency.  

Chapter 5 provides a summary of all research projects. 

1.4 References 
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CHAPTER 2.    MAXIMIZING ION-TAGGED OLIGONUCLEOTIDE LOADING ON 

MAGNETIC IONIC LIQUID SUPPORTS FOR THE SEQUENCE-SPECIFIC 

EXTRACTION OF NUCLEIC ACIDS  

Kevin D. Clark†, Chenghui Zhu, and Jared L. Anderson 

Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States 

† Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-

Champaign, Urbana, Illinois 61801, United States 

Modified from a manuscript published in Anal. Chem. 2019, 91, 5945−5952 

Copyright © 2019, American Chemical Society 

2.1 Abstract 

Targeted nucleic acid analysis requires the highly selective extraction of desired DNA 

fragments in order to minimize interferences from samples with abundant heterogeneous 

sequences. We previously reported a method based on functionalized oligonucleotide probes 

known as ion-tagged oligonucleotides (ITOs) that hybridize with complementary DNA targets 

for subsequent capture using a hydrophobic magnetic ionic liquid (MIL) support. Although the 

ITO-MIL approach enriched specific DNA sequences in quantities comparable to a commercial 

magnetic bead-based method, the modest affinity of the ITO for the hydrophobic MIL limited 

the yield of DNA targets, particularly when stringent wash conditions were applied to remove 

untargeted DNA. Here, we report the synthesis and characterization of a series of ITOs in which 

functional groups were installed within the cation and anion components of the tag moiety in 

order to facilitate loading of the ITO to the MIL support phase. In addition to hydrophobic 

interactions, we demonstrate that π−π stacking and fluorophilic interactions can be exploited for 

loading oligonucleotide probes onto MILs. Using a disubstituted ion-tagged oligonucleotide 

(DTO) possessing two linear C8 groups, nearly quantitative loading of the probe onto the MIL 
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support was achieved. The enhanced stability of the DTO within the MIL solvent permitted 

successive wash steps without the loss of the DNA target compared to a monosubstituted ITO 

with a single C8 group that was susceptible to increased loss of analyte. Furthermore, the 

successful capture of a 120 bp KRAS fragment from human plasma samples followed by real-

time quantitative polymerase chain reaction (qPCR) amplification is demonstrated. 

2.2 Introduction 

Despite the importance of DNA as a biological repository for genetic information, the 

vast majority of nucleic acid sequences are not targeted in molecular diagnostics applications. 

For example, mutant populations of cell-free DNA that indicate malignancy can be as low as 

0.01% abundance of the wild-type sequence in human plasma.1 Major advances in nucleic acid 

sequencing and detection technologies have provided a rapid means to routinely characterize 

thousands of samples per day, but the detection of specific DNA sequences such as single-

nucleotide polymorphisms remains a significant challenge due to high levels of untargeted 

nucleic acids that increase the background signal in bioanalytical assays.2,3 In order to overcome 

this bottleneck in nucleic acid analysis, sample preparation methods that capture and enrich 

specific DNA sequences must be developed. 

The most popular approaches for the enrichment of specific nucleic acid sequences are 

based on magnetic beads or particles coated with streptavidin. Biotinylated oligonucleotide 

probes that exhibit a high affinity toward streptavidin can be designed to capture DNA targets 

via base-pairing interactions. After a washing step to remove interfering DNA molecules, the 

extracted nucleic acid targets can be released for downstream analysis. Successive washes may 

improve the purity of the nucleic acid recovered from the magnetic beads but often result in 

lower analyte yields.4,5 Moreover, the tendency of interferences from the sample matrix to 

nonspecifically adsorb to the magnetic support material often requires an additional step 
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involving the use of bovine serum albumin (BSA) in the workflow to pacify or block the surface. 

Contemporary magnet-based DNA capture methods are also limited by aggregation of the solid 

bead/particle support material, resulting in lower capture efficiencies and the clogging of liquid 

handling devices.6-9 Such particle aggregates are particularly unwanted if downstream 

bioanalysis is to be performed within a microfluidic device possessing narrow channels that can 

be easily obstructed. 

An ideal magnetic support material for DNA extraction would possess the following 

features: 1) mitigate or eliminate aggregation behavior, 2) exhibit low nonspecific extraction of 

untargeted DNA and interferences (like proteins), and 3) possess high affinity toward decorated 

oligonucleotide probe molecules. In contrast to conventional magnetic supports, magnetic ionic 

liquids (MILs) are paramagnetic molten salts comprised of organic/inorganic cations and anions 

with melting points at or below 100 °C.10,11 Physicochemical properties of MILs including 

viscosity, hydrophobicity, magnetic susceptibility, and solvation behavior can be readily tuned 

by judicious selection/functionalization of the cation and anion structures.12-14 The liquid nature 

of MILs represents a key advantage over solid magnetic substrates that suffer from particle 

agglomeration, making these solvents ideal for biomolecule sample preparation applications that 

interface with downstream bioassays. MILs based on Fe(III),15 Co(II),16 and Ni(II) anion 

complexes were recently shown to provide high enrichment factors for a variety of DNA 

fragments and, in some cases, were directly coupled to polymerase chain reaction (PCR) and 

real-time quantitative PCR (qPCR) for rapid detection and quantification of extracted nucleic 

acids in the MIL phase.17,18 The particle- and aggregation-free extraction of specific DNA 

sequences has also been demonstrated using a Mn(II)-based hydrophobic MIL as a paramagnetic 

liquid support material.19 By appending amphiphilic alkylimidazolium groups to synthetic 
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oligonucleotides, the probe molecules partitioned to the MIL support via simple hydrophobic 

interaction and facilitated the capture of complementary DNA sequences via Watson−Crick base 

pairing. Moreover, the affinity of the ion-tagged oligonucleotide (ITO) probes for the 

hydrophobic MIL support was highly dependent on the chemical structure of the bioconjugate 

where longer alkyl groups (e.g., octyl) in the ITO resulted in enhanced partitioning to the MIL 

phase. 

Although the previously described MIL-ITO approach provided similar sequence-specific 

DNA extraction yields to a commercial magnetic bead-based method,19 the modest affinities (ca. 

50% loading efficiency) of the ITO probe for the MIL support limited the technique in three 

important ways: 1) since fewer probe molecules partitioned to the MIL support, a lower capacity 

for target DNA was observed, 2) ITO probes with lower affinity for the MIL are more readily 

desorbed upon successive washing of the MIL phase to improve sample purity/selectivity for 

DNA targets, and 3) interferences in complex samples (e.g., cell lysate) resulted in decreased 

extraction yields by competing with the ITO probe for sorption to the MIL. Here, we report a 

series of ITOs with unique ion tag structures, elucidating the structural components of the tag 

moiety that result in improved affinities of the synthetic probe for the MIL support. In addition to 

modifying the ITO cation structure, fluorophilic anions (e.g., bis-

[(trifluoromethyl)sulfonyl]imide [NTf2
−]) and amphiphilic anions were paired with imidazolium 

cations for enhanced partitioning to the MIL support. We investigated a cyclic disulfide-

modified oligonucleotide starting material for the preparation of disubstituted ion-tagged 

oligonucleotides (DTOs) that provided loading efficiencies greater than 95% onto the MIL 

support, furnishing an extraction phase capable of recovering a 10-fold greater quantity of target 

nucleic acid compared to monosubstituted ITOs. The stability of the ITO- and DTO-MIL 
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interactions was studied under stringent hybridization conditions, ultimately revealing that DTOs 

provided superior recoveries of target DNA sequences from samples containing interfering 

nucleotide sequences. As demonstrated herein, the structural tunability of both the cation and 

anion components of the ion tag greatly expands the modes of intermolecular interactions 

between ITO probes and MIL supports, facilitating high-efficiency DNA extraction and guiding 

the design of future ITOs. 

2.3 Experimental Section 

2.3.1 Reagents and Materials 

Acetonitrile (99.9%), LC-MS grade acetonitrile (≥ 99.9%), hexane, mixture of isomers (≥ 

98.5%), ethylenediaminetetraacetic acid (EDTA, 99.4% ~ 100.06%), triethylamine (TEA, ≥ 

99.5%), magnesium chloride (99.0% ~ 102.0%), 1-bromooctane, ammonium persulfate (APS, ≥ 

98%)), sodium octylsulfate (≥ 95%), and plasma from human were purchased from Sigma 

Aldrich (St. Louis, MO, USA).  Ethyl ether (≥ 99%) was purchased from Avantor (Center 

Valley, PA, USA). Allylimidazole (99%) was purchased from Alfa Aesar (Ward Hill, MA, 

USA). 1,1,1,5,5,5-Hexafluoroacetylacetone (99%) and 4,4,4-trifluoro-1-phenyl-1,3-butanedione 

(99%) were purchased from ACROS organics (Morris, NJ, USA). 

Tris(hydroxymethyl)aminomethane (ultra pure), tris(hydroxymethyl)aminomethane 

hydrochloride (≥ 99.0%), urea (≥ 99%) and boric acid (≥ 99.5%) were purchased from RPI 

(Mount Prospect, IL, USA). Tris(2-carboxyethyl)phosphine (TCEP) was purchased from Soltec 

Ventures (Beverly, MA, USA). Sodium hydroxide, sodium chloride, M-270 Streptavidin coated 

Dynabeads, SYBR Green I nucleic acid gel stain, dimethylsulfoxide (DMSO), acetic acid, and 

ammonium hydroxide were purchased from Fisher Scientific (Fair Lawn, NJ, USA). 

Tetramethylethylenediamine (TEMED), 40% acrylamide and bis-acrylamide solution 29:1, and 

SsoAdvanced Universal SYBR Green Supermix and a KRAS, human PrimePCR™ SYBR green 
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assay including template and primers (120 bp amplicon) were purchased from Bio-Rad 

Laboratories (Hercules, CA, USA). Dithiolated, biotinylated, and unmodified oligonucleotides 

and primers were purchased from Integrated DNA Technologies (Coralville, IA, USA). The 

oligonucleotide probe sequence used for extraction of the KRAS target was 5’- TTG AAC TAG 

CAA TGC CTG TG -3’. 

2.3.2 Synthesis of MILs 

The trihexyl(tetradecyl)phosphonium manganese(II) hexafluoroacetylacetonate 

([P66614
+][Mn(hfacac)3

−]) MIL and the trihexyl(tetradecyl)phosphonium manganese(II) 4,4,4-

trifluoro-1-phenyl-1,3-butanedionate ([P66614
+][Mn(Phtfacac)3

−]) MILs were synthesized using a 

similar approach to previously reported procedures20-22 and their chemical structures are shown 

in Figure A1a,b of Appendix A. Synthesis procedures the MILs used in this study are described 

in the Supporting Information. The products were characterized using ESI-TOFMS in both 

positive and negative ion modes (Figures A3-A6). 

2.3.3 Synthesis and Characterization of ITOs and DTOs 

Allylimidazolium salts were synthesized as previously reported.19,23,24 The ITO and DTO 

structures investigated herein are shown in Table 2.1 and were synthesized according to 

published procedures.19 Briefly, 4 nmol of a 20-mer thiolated oligonucleotide (for ITO synthesis) 

or 2 nmol of a 20-mer oligo with a terminal cyclic disulfide (for DTO synthesis) were reduced 

using 40 nmol of tris(2-carboxyethyl)phosphine (TCEP). The thiolated oligo was then transferred 

to a UV transparent 96-well microplate along with 400 nmol of an allyl-functionalized 

imidazolium salt for a final solution composition of 30% (v/v) ACN. The reaction well was 

sealed with optically transparent tape, purged with N2, and placed beneath a handheld UV lamp 

set to 365 nm output for 1-2 h. The ITOs or DTOs were separated from unreacted starting 

material using denaturing polyacrylamide gel electrophoresis (PAGE). Product bands were  
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Table 2.1 Effect of ITO and DTO structure on hybridization, loading, and target capture 

performance. 

 

a Conditions: concentration of ITO: 8 ng µL−1; hydrophobic MIL: [P66614
+][Mn(hfacac)3

−]; MIL volume: 1 µL; sample 

volume: 50 µL; extraction time: 10 min; quantification method: anion-exchange HPLC with UV detection at 260 nm.  
b Conditions: same as a. MIL density = 1.4 mg µL−1 

c Conditions: amount of ITO: 1.69 pmol; amount of target: 169 fmol of 261 bp DNA target; MIL volume: 1 µL; sample 

volume: 50 µL; extraction time: 10 min; desorption time: 10 min at 90 °C quantification method: qPCR.  
d Not applicable. Extractions were not performed coupled with qPCR due to comparatively low loading efficiencies. 

Oligonucleotide  

(20-mer) 
Structure 

Melting 

Temp (°C) 

Loading 

Efficiencya  

(%, n=3) 

Loading Capacityb 

(pmol µL−1, n=3) 
Target Capture Cqc 

Untagged 75 10 ± 3 7 ± 2 35.35 ± 0.6 

[ABIM+][Br−]-ITO 75 12 ± 3 8 ± 2 36.01 ± 0.5 

[ABIM+][NTf2
−]-ITO 67 40 ± 4 25 ± 2 nad 

[ABIM+][OS−]-ITO 75 45 ± 2 28 ± 1 28.2 ± 1.1 

[ABIM+] 

[PFBS−]-ITO 

 

70 
35 ± 5 

 
22 ± 3 nad 

[AOIM+][OS−]-ITO 

 
75 74 ± 4 46 ± 2 26.1 ± 0.3 

[AOIM+][Br−]-ITO 72 48 ± 4 31 ± 3 25.67 ± 1.3 

[ADIM+][Br−]-ITO 76 75 ± 5 47 ± 3 24.7 ± 2.3 

[AOIM+]2[Br−]-DTO 73 95 ± 4 57 ± 2 24.3 ± 1.1 
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excised, crushed, and eluted with Milli-Q water overnight. The ITOs or DTOs were 

characterized by reversed-phase ion-pair LC-TOFMS (see Figures A7, A8, A12 for details). 

2.3.4 Sequence-Specific DNA Capture Using MILs and ITO or DTO Probes 

For DNA extraction, ITOs or DTOs were added to a 25 mM NaCl solution containing 

0.169 fmol of 261 bp DNA target at various probe:target ratios. For experiments testing probe 

selectivity, 0.169 fmol of a DNA sequence (complement, 1 nt, or 2 nt mismatch to the ITOs 

probe) was also added to solution. The probes and DNA targets were annealed by heating at 90 

°C for 5 min followed by cooling of the solution to 37 °C for 5 min. A 1 µL aliquot of MIL 

support was then added to the solution and incubated at 37 °C for 10 min to extract the ITO- or 

DTO-target duplex. The sample solution was decanted, and the MIL phase was washed using 50 

µL of deionized water. Extracted DNA targets were desorbed from the MIL phase in 50 µL of 

deionized water at 90 °C for 10 min. A 1 µL aliquot of desorption solution was analyzed by 

qPCR amplification. 

2.3.5 Loading Efficiency of ITO or DTO Probes onto the MIL Support 

The ITO and DTO stability within the MIL phase was tested using HPLC for direct 

detection of the probe molecules. For these experiments, a liquid phase microextraction 

technique was used in which a 1 µL aliquot of hydrophobic MIL support was immersed in a 50 

µL solution containing 60 pmol (400 ng) of ITO or DTO for 10 min at room temperature. A 20 

µL aliquot of the aqueous layer was then removed for injection onto an Agilent 1260 HPLC with 

a variable wavelength detector (Santa Clara, CA, USA) and separated on a 35 mm × 4.6 mm i.d. 

× 2.5 µm TSKgel DEAENPR anion exchange column with a 5 mm × 4.6 mm i.d.× 5 µm TSKgel 

DEAE-NPR guard column (Tosoh Bioscience, King of Prussia, PA). Mobile phase A consisted 

of 20 mM Tris-HCl (pH 8), and mobile phase B was 1 M NaCl and 20 mM Tris-HCl (pH 8). 
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DNA was detected at 260 nm, and the amount of DNA recovered from the MIL phase was 

determined using an external calibration curve. 

2.3.6 qPCR Amplification 

Each qPCR reaction mix was 19 µL which contains 4.6 µL of deionized water, 2.6 µL of 

50 mM MgCl2, 1 µL of DMSO, 0.8 µL of 10 µM forward and reverse primers, and 10 µL of 

SsoAdvanced Universal SYBR Green Supermix (2x). The forward and reverse primers for qPCR 

amplification of the 261 bp target sequence were 5′- CAC GCT TAC ATT CAC GCC CT -3′ and 

5′- CGA GCG TCC CAA AAC CTT CT -3′. For all reactions, 1 µL of the template DNA was 

added to the 19 µL of the qPCR reaction mix. For amplification of the 120 bp KRAS target, the 

reaction mix included 4.4 µL of water, 10 µL of SsoAdvanced Supermix, 1 µL of primer mix, 

2.6 µL of 50 mM MgCl2, 1 µL of DMSO, and 1 µL of template DNA. The primers from the 

KRAS, human PrimePCR assay kit were used without further purification. Amplification was 

performed using a Bio-Rad CFX96 Touch Real-Time PCR Detection System or Bio-Rad 

CFX Connect Real-Time PCR Detection System. The thermal program used for all qPCR assays 

included an initial denaturation step of 95.0 °C for 5 min followed by 40 cycles consisting of 

95.0 °C for 10 s and 64.0 °C for 30 s. A five-point external calibration curve was used to 

determine the amplification efficiency and quantify extracted nucleic acid. 

2.4 Results and Discussion 

2.4.1 Design of ITOs for Enhanced Loading Efficiency onto MIL Supports 

The extraction of specific DNA sequences is highly dependent on facilitating strong 

interactions between the oligonucleotide probe and the support phase. Contemporary methods 

rely on noncovalent interactions between biotin labels and streptavidin-coated magnetic 

bead/particles, but these materials often suffer from agglomeration processes that diminish 

extraction performance. As described in our previous work, we employed a magnetic liquid 



www.manaraa.com

17 

 

support and ITO probes to circumvent the drawbacks of solid particle supports while maintaining 

a high yield of target DNA sequences.19 Since the studied ITOs possessed alkyl chain lengths 

ranging from methyl to octyl, the probes exhibited limited affinity for the hydrophobic MIL 

support (ca. 50% ITO loading efficiency). In order to improve the partitioning of ITOs to the 

MIL support, we synthesized a series of ITOs possessing one or more of the following 

properties: longer alkyl groups in the cation, amphiphilic anions, fluorophilic anions, and 

multiple ion tag moieties. Initially, we focused on the synthesis of alkylimidazolium tags with 

longer carbon chains (C10 and C16). However, reaction mixtures containing the amphiphilic 1-

allyl-3-hexadecylimidazolium bromide ([AHIM+][Br−]) salt resulted in the precipitation of the 

thiolated nucleic acid starting material due to the alkylimidazolium group exhibiting surfactant 

properties and forming aggregates with DNA.25 This phenomenon was not observed when using 

1-allyl-3-decylimidazolium bromide ([ADIM+][Br−]) or any other alkylimidazolium salts with 

shorter chain lengths. 

In order to determine the influence of the longer alkyl chain on partitioning to the MIL 

phase, the ITO product generated from reaction with the [ADIM+][Br−] salt was subjected to 

liquid phase microextraction using the [P66614
+][Mn(hfacac)3

−] MIL support as the extraction 

solvent. As shown in Table 2.1, a loading efficiency of 75 ± 5% was observed for the 

[ADIM+][Br−]-ITO, compared to a 48 ± 4% loading efficiency of the 1-allyl-3-octylimidazolium 

bromide ([AOIM+][Br−])-ITO, with an unmodified oligonucleotide probe providing 10 ± 3% 

under the same conditions.19 This result is likely due to the increased hydrophobic interactions 

between the C10 alkyl chain and the hydrophobic MIL support. 

Given that dispersive interactions primarily govern the partitioning of the ITO to the MIL 

phase and yet the longer chain alkylimidazolium salts tended to precipitate the oligo starting 
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material, ITOs were synthesized to include hydrophobic groups in the anion as well. Allyl-

bearing imidazolium salts were prepared with octylsulfate anions via metathesis reaction 

between the bromide form of the imidazolium salt and sodium octylsulfate.26 As shown in Table 

2.1, a loading efficiency of 45 ± 2% was observed for the 1-allyl-3-butylimidazolium 

octylsulfate ([ABIM+][OS−])-ITO. The loading efficiency was a substantial increase from the 

[Br−] analog, which exhibited a loading efficiency of 12 ± 3%. In addition to amphiphilic anions, 

fluorine-rich anions were also imparted to the tag moiety of the ITO in an effort to capitalize on 

fluorophilic interactions with the fluorinated ligands of the MIL support (i.e., hfacac). 

Allylimidazolium salts with either [NTf2
−] or [PFBS−] anions were prepared by metathesis 

reactions and subsequently studied for their ability to partition to the hydrophobic MIL. When 

paired with the [ABIM+] cation in the ITO structure, both [NTf2
−] and [PFBS−] anions 

contributed to higher ITO loading efficiency (40 ± 4% and 35 ± 5%, respectively) compared to 

the [Br−] form of the ITO (ca. 12%). Since the [OS−] anion appeared to have the greatest 

influence on loading efficiency, an ITO with the [AOIM+] cation and [OS−] anion components 

was synthesized. A significantly higher affinity for the MIL phase was observed for the 

[AOIM+][OS−]-ITO, resulting in a loading efficiency of 74 ± 4%. These results strongly suggest 

that the anion component of the ITO plays an important role in facilitating binding of the ITO 

probe to the MIL support and could be used for further optimization of probe-support affinity. 

Because the noncovalent labeling of the ITO probe with an additional alkyl moiety (i.e., 

[OS−] anions) provided enhanced loading efficiency, the covalent attachment of another alkyl 

group of the same length would also be expected to improve affinity toward the MIL. A 

dithiolated oligonucleotide starting material was employed as a means to introduce two ion-tags 

with C8 alkyl groups into the same probe structure via covalent linkage. The structure of the 
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resulting [AOIM+]2[Br−]-DTO is shown in Table 2.1. The loading efficiency was investigated 

under the same conditions used for the ITO probes and revealed nearly quantitative capture (95 ± 

4%) of the [AOIM+]2[Br−]-DTO by the hydrophobic [P66614
+][Mn(hfacac)3

−] MIL. 

Apart from hydrophobic interactions that facilitate loading onto the MIL support, ion tags 

with benzylimidazolium groups ([ABzIM+][Br−]-ITO) were coupled with the 

[P66614
+][Mn(Phtfacac)3

−] MIL support which possesses phenyl groups within the anion 

component in order to investigate the effect of π−π stacking on loading efficiency. The structures 

of the [P66614
+][Mn(Phtfacac)3

−] MIL and the [ABzIM+][Br−]-ITO are shown in Figures A1b and 

A2, respectively. The loading efficiency and selectivity were tested using either a benzyl or C8-

tagged oligo coupled with either the [P66614
+][Mn(Phtfacac)3

−] MIL or the [P66614
+][Mn(hfacac)3

−] 

MIL to account for nonspecific interactions (i.e., hydrophobic interactions) that may also 

contribute to loading efficiency of the aromatic tag and/or MIL support. As shown in Table A1 

of Appendix A, no differences in extraction efficiency were observed for the benzyl-tagged oligo 

and an unlabeled oligo using the [P66614
+][Mn(Phtfacac)3

−] MIL support. However, duplexes 

generated from the [ABzIM+][Br−]-ITO and its complementary sequences were extracted with 

substantially higher efficiency (40 ± 3%) than untagged duplexes (1 ± 1%), indicating the 

feasibility of utilizing π-stacking interactions for sequence specific DNA capture. 

2.4.2 Binding Affinity and Durability of ITO-MIL Interactions 

In order to determine whether high loading efficiency was correlated to better retention of 

probe molecules within the MIL support solvent, the desorption of either ITOs or DTO from the 

MIL after successive wash steps commonly employed to remove untargeted DNA in sequence-

specific extraction procedures was tested. Similar to the procedures shown in Figure 2.1b and c, 

the [AOIM+][Br−]-ITO or [AOIM+]2[Br−]-DTO was loaded onto the MIL support and 

subsequently immersed in a solution containing complementary 20 mer DNA. The probes and  
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Figure 2.1 (a) Chemical structures of the MILs used in this study and examples of the 

intermolecular interactions between the cation/anion components of the ion tag and the MIL 

support that govern ITO loading efficiency. Schematic showing the sequence-specific DNA 

extraction procedure using the hydrophobic [P66614
+][Mn(hfacac)3

−] MIL and the (b) mono-

substituted [AOIM+][Br−]-ITO or (c) di-substituted [AOIM+]2[Br−]-DTO. 

 

targets were annealed and then washed with 25 mM NaCl at 40 °C for 10 min, and the aqueous 

phase was removed for anion-exchange HPLC analysis. Figure 2.2a shows chromatograms 

obtained for the ITO (red trace) or DTO (blue trace) experiments. As indicated by the area of the 

later eluting peak, 2.7 ± 0.6-fold more probe-target duplex was desorbed from the MIL support 

when the [AOIM+][Br−]-ITO was used to capture the DNA target. These findings are in good 
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agreement with the results obtained for the loading efficiency data (Table 2.1) and show a 

positive correlation between loading efficiency and stability of the ITO-MIL interactions. 

 

Figure 2.2 (a) HPLC quantification of the loss of target-ITO duplex from the MIL support after 

loading a solution containing 60 pmol of duplex onto the MIL and subsequently heating the 

sample at 37 ˚C for 10 min in 25 mM NaCl solution. (b) 0.169 pmol (ca. 2.7×104 pg) of 261 bp 

DNA target from aqueous solution using probes substituted with one (red trace) or two (blue 

trace) [AOIM+][Br−] groups, or an unmodified probe sequence (green trace). The asterisk 

indicates that the data were outside the range of the calibration curve and were extrapolated to 

obtain these values. 

 

Many relevant nucleic acid targets are much longer sequences than the initially studied 

20 mer and may potentially impact the partitioning behavior of the probe-target duplex from the 

MIL support. The affinity between the ITOs and DTOs for the MIL was also tested following the 

capture of a model 261 bp DNA sequence. For these experiments, a procedure similar to Figure 

2.1b and c was employed, using qPCR amplification to detect very small quantities of nucleic 

acid desorbed from the MIL. After extraction of a solution containing 0.169 pmol of target using 

either ITO, DTO, or an unmodified oligonucleotide as hybridization probes, the MIL phase was 

subjected to successive washes with 25 mM NaCl at 37 °C in order to maintain base pairing 

within the probe-target duplex. Wash fractions were collected for qPCR analysis until no 

detectable target DNA remained, or the amount of desorbed target DNA from wash to wash 

remained constant. As shown in Figure 2.2b, the amount of DNA target desorbed from the MIL 
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decreased after the first three wash steps when using either the ITO or DTO. The initial rapid 

decrease in DNA target desorption was also observed when using unmodified oligonucleotide 

probes, indicating that the phenomenon is due to the release of DNA nonspecifically extracted by 

the MIL support. It is important to note that a greater amount of untagged probe-target duplex 

was initially released from the MIL phase than for ITO- or DTO-target duplexes, likely due to 

weaker interactions between the untagged probe and MIL support. Moreover, no DNA was 

detected for any subsequent washes for the sample extracted using the unmodified 

oligonucleotide probe. After 9 wash steps, the amount of DNA target released by the 

[AOIM+][Br−]-ITO was lower than the limit of quantification. However, the [AOIM+]2[Br−]-

DTO continued to release a small amount of DNA target into the subsequent wash solutions and 

retained a detectable amount of DNA target for up to 12 successive washes. These results 

indicate that the DTO is retained within the MIL phase longer and may be subjected to more 

rigorous washing or hybridization conditions than the monosubstituted ITO. 

2.4.3 Distinguishing Double- and Single-Nucleotide Variants Using ITOs with MIL-Based 

Capture and Comparison to a Commercial Magnetic Bead-Based Method 

Single-nucleotide polymorphisms are the most common type of alteration to genomic 

DNA and are widely recognized to provide meaningful diagnostic information for numerous 

diseases. These modifications are invariably colocalized with high levels of background nucleic 

acids that differ by a single base pair. The selectivity of the ITO and DTO probes for 

complementary sequences and mismatched sequences was initially tested using melt curve 

analysis. As shown in Table 2.1 and Figures A9 and A10, the Tm value of the [AOIM+]2[Br−]-

DTO probe and complement was comparable to the monosubstituted [AOIM+][Br−]-ITO, 

indicating little influence of the second alkyl chain on hybridization behavior. Similarly, both 

ITO and DTO showed only minor melt curve features for the 1 and 2 nt mismatches, compared 
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to the more prominent and higher melting temperature peaks observed for the unmodified 

oligonucleotide probe (Figure A11). For [AOIM+][OS−], a slightly higher melting temperature 

with the complementary sequence was observed compared to the unmodified oligo probe, while 

ITOs with [NTf2
−] and [PFBS−] anions resulted in much lower melting temperatures (Table 2.1). 

Although ITOs with [NTf2
−] and [PFBS−] anions showed minimal peaks for 1 and 2 nt 

mismatches, the melt curves were very broad (ca. 20 °C), indicating noncanonical base pairing or 

nonspecific interactions.27 For this reason, we focused on the DTO and [AOIM+][Br−]-ITOs for 

extraction applications. 

Cell-free nucleic acid biomarkers in plasma cover a wide range of concentrations from no 

detectable amount to 1000 ng μL−1 with the average concentration near 200 ng μL−1.28,29 Due to 

the presence of highly similar interfering DNA, low abundance target DNA sequences are 

particularly challenging to detect. As shown in Table A2, the MIL-based extraction conditions 

were optimized for low target concentrations, resulting in a 5:1 ratio of probe:target sequence 

(0.845 fmol of DTO) and 1 μL of MIL. Next, the extraction selectivities of the [AOIM+]2[Br−]-

DTO and [AOIM+][Br−]-ITO were studied by spiking a 3.4 pM (0.027 ng μL−1) solution of 261 

bp target DNA with interfering sequences (20 mers) with either 0, 1, or 2 nt mismatches to the 20 

mer probes. The samples were then subjected to extraction using the procedures shown in 

Figures 2.1b and c. Extractions were also performed using a commercial method based on 

magnetic beads according to the manufacturers instructions. As shown in Table 2.2, the ITO and 

DTO methods exhibited superior extraction performance compared to the magnetic bead-based 

approach when single nucleotide variants were added to solution. These findings are likely due 

to higher nonspecific DNA extraction observed for magnetic beads when compared to the 

[P66614
+][Mn(hfacac)3

−] MIL support.19 
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Table 2.2 Quantification cycle (Cq) values for sequence specific DNA extraction using DTO, 

ITO, or magnetic bead-based methods obtained from qPCR amplification. 

Extraction 

method 

DNA target  

+ 20 mer 

comp (n=3) 

DNA target  + 20 

mer 1 nt 

mismatch (n=3) 

DNA target  + 20 

mer 2 nt mismatch 

(n=3) 

DNA target (n=3) 

Dynabeads M-

270a  
32.98 ± 0.46 32.52 ± 0.26 31.31 ± 0.64 31.23 ± 0.06 

[AOIM+]2[Br-]b 30.51 ± 0.84 29.30 ± 1.16 31.59 ± 0.10 28.29 ± 0.19 

[AOIM+][Br-]b 31.29 ± 1.06 30.58 ± 0.34 30.07 ± 0.94 30.36 ± 0.65 

aExtraction conditions: biotinlayted probe: 16.9 fmol; dynabeads M-270: 1.3 μg; 261 bp DNA 

target: 0.169 fmol; DTO [AOIM+]2[Br-]: 0.845 fmol; ITO [AOIM+][Br-]: 16.9 fmol. Interfering 

sequences were all spiked at 1:1 mole ratio to target.  
b261 bp DNA target were first hybridized in 50 μL 25 mM NaCl solution from 90 °C for 5 min 

to 37 °C for 5 min. 1 μL of MIL: [P66614
+][Mn(hfacac)3

−] was added in the middle of the solution 

after hybridization. The extraction was performed for 10 min at room temperature. The 261 bp 

DNA target were desorbed with 50 μL of 25 mM NaCl at 37 °C for 10 min. 

 

2.4.4 Sequence-Specific DNA Capture from Bacterial Cell Lysate and Human Plasma 

Using DTO Probes and MIL Support 

In order to investigate the influence of a complex sample matrix on the performance of 

the DTO-based DNA capture method, approximately 1 × 106 E. coli cells were lysed by 

ultrasonication, and the crude lysate was spiked with target DNA. Two approaches were studied 

for sequence-specific DNA extraction: 1) a hybridize-first method where the probe and target are 

hybridized prior to capture by the MIL support and 2) a load-first method where the DTO probe 

is first loaded onto the MIL support and subsequently used for extraction of target DNA. For 

both methods, the optimal ratio of DTO:target (5:1) was used. Figure 2.3 shows that when the 

hybridize-first method was employed for the extraction of 0.3 ng of target DNA from the crude 

cell lysate, a Cq value of approximately 33 was obtained using the DTO probe. However, a much 

lower Cq value (23.5 ± 0.2) was observed for the load-first method, indicating an approximate 

1000-fold increase in the amount of DNA recovered compared to the hybridize-first method. The 

observation that greater quantities of DNA target were recovered using the load-first method 
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may be due to nonspecific interactions between the alkyl chains of the DTO and lipophilic 

components of the cell lysate that compete with the hydrophobic MIL. Figure 2.3 also shows a 

similar trend for the monosubstituted [AOIM+][Br−]-ITO, albeit less pronounced due to the ITO 

possessing one fewer C8 alkyl group. 

 

Figure 2.3 qPCR amplification of 261 bp DNA target isolated from E. coli cell lysate using the 

ITO-MIL approach either in hybridize first (dashed lines) or load first (solid lines) mode. 

Samples spiked with 0.3 ng of target were subjected to each mode using either the 

monosubstituted [AOIM+][Br-]-ITO (red traces) or the disubstituted [AOIM+]2[Br-]-DTO (blue 

traces). 

 

The detection of cell-free nucleic acids in human plasma has diagnostic and prognostic 

potential for a variety of cancers.28 Although it is an appealing alternative to conventional tissue 

biopsies, plasma samples contain proteins and globulins that inhibit the direct PCR amplification 

of DNA targets.30 The extraction performance of the DTO-MIL method was investigated in 

human plasma samples spiked with 6 fmol of a 120 bp fragment from a known oncogene, 

KRAS, as the DNA target. The MIL and DTO-based method was also compared to an approach 

using commercially available streptavidin-coated magnetic beads and biotinylated 

oligonucleotides (20-mer) complementary to the KRAS fragment. Prior to extraction, samples 

were diluted 10-fold in order to minimize the nonspecific extraction due to matrix interferences. 

As shown in Figure 2.4, the diluted plasma sample resulted in diminished extraction efficiency  
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Figure 2.4 Comparison of sequence-specific DNA capture methods for aqueous solution and 

human plasma samples. A 120 bp fragment of human KRAS gene was extracted using either 

commercially available magnetic beads and biotinylated oligo probes or the DTO-MIL method 

and subjected to qPCR amplification. 

 

for the DTO-MIL method compared an aqueous DNA solution, likely due to competing 

interactions between matrix components and the MIL. A similar trend was observed for the 

magnetic bead-based approach, which exhibited little to no difference in Cq values (24.82 ± 

0.45) when compared to the DTO-MIL method (23.97 ± 0.60) for the extraction of KRAS 

fragment from plasma. 

2.5 Conclusions 

The analysis of specific DNA sequences invariably requires a selective sample 

preparation procedure that eliminates or dramatically reduces the quantity of untargeted 

biomolecules from the sample. The recognition of target DNA using ITOs coupled with MIL-

based capture represents a powerful approach for the enrichment of specific DNA sequences. In 

order to capitalize on the selectivity and high DNA target yields afforded by the ITO-MIL 

method, we investigated a series of ITO probes with various hydrophobic and fluorophilic 

functional groups in the cation and anion moieties of the ion tag. The best performing probe 
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possessed two alkyl groups (C8) that facilitated dense loading of the DTO onto the MIL support. 

When applied for the capture of specific DNA sequences from aqueous solution, the high affinity 

of the DTO for the MIL support allowed for more stringent wash conditions than a 

monosubstituted ITO ([AOIM+][Br−]-ITO). Furthermore, the DTO-MIL system was capable of 

extracting target DNA from solutions containing single nucleotide variants with higher DNA 

yields than a commercial magnetic bead-based approach. The DTO-based method also 

selectively extracted DNA from crude bacterial cell lysate, demonstrating the tolerance of the 

sample preparation method toward interferences in complex samples. 
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3.1 Abstract 

Detection of circulating tumor DNA (ctDNA) presents several challenges due to single-

nucleotide polymorphisms and large amounts of background DNA. Previously, we reported a 

sequence-specific DNA extraction procedure utilizing functionalized oligonucleotides called ion-

tagged oligonucleotides (ITOs) and disubstituted ion-tagged oligonucleotides (DTOs). ITOs and 

DTOs are capable of hybridizing to complementary DNA for subsequent capture by a magnetic 

ionic liquid (MIL) through hydrophobic interactions, π-π stacking, and fluorophilic interactions. 

However, the performance of the ITOs and DTOs in complex sample matrices has not yet been 

evaluated. In this study, we compare the amount of KRAS DNA extracted using ITO and DTOs 

from saline, 2-fold diluted plasma, 10-fold diluted plasma, and 10-fold diluted blood. We 

demonstrate that ITO/DTO-MIL extraction is capable of selectively preconcentrating DNA from 

diluted plasma and blood without additional sample preparation steps. In comparison, 

streptavidin-coated magnetic beads were unable to selectively extract DNA from 10-fold diluted 

plasma and 10-fold diluted blood without additional sample clean-up steps. Significantly more 

DNA could be extracted from 2-fold diluted plasma and 10-fold diluted blood matrices using the 

DTO probes compared to the ITO probes, likely due to stronger interactions between the probe 

and MIL. The ability of the DTO-MIL method to selectively preconcentrate small concentrations 
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of DNA from complex biological matrices suggests that this method could be beneficial for 

ctDNA analysis. 

3.2 Introduction 

Circulating tumor DNA (ctDNA) is fragmented tumor-derived DNA found in blood 

originating from tumor cells that have undergone apoptosis or necrosis.1 Detection of ctDNA 

from blood has massive potential to supplement or replace invasive tissue biopsies for cancer 

diagnosis, treatment, and the monitoring of residual disease.2 However, during the early stages of 

cancer or after cancer treatment, ctDNA fragments are present in low amounts relative to wild-

type DNA with mutation abundances potentially less than 0.01%.3 Large amounts of background 

DNA can mask low abundance mutant fragments causing false negative results.2 Furthermore, 

ctDNA fragments are prone to single-nucleotide polymorphisms (SNPs).4 The KRAS gene is 

particularly prone to SNPs, typically around codon 12 and 13 in exon 2, which can impair the 

guanosine triphosphatase activity of the KRAS protein resulting in cellular proliferation.5,6 The 

presence of certain KRAS SNPs have also been correlated to the success of anti-EGFR therapy 

making it crucial to distinguish SNPs from wild-type DNA.7,8 Therefore, ctDNA analysis 

requires sequence-specific detection in order to distinguish low concentrations of SNPs from 

complex matrices. 

There are several polymerase chain reaction (PCR) methods for sequence-specific 

amplification and detection.2,9 However, large amounts of background DNA may result in false 

positives due to mishybridization or mask target DNA fragments.10 Wild-type DNA can be co-

amplified with ctDNA when using similar primer sets. PCR blockers, such as peptide nucleic 

acids (PNAs) or locked nucleic acids (LNAs), can limit amplification of wild-type DNA.11-13 

However, PNAs and LNAs are expensive, and their ability to discriminate between the wild-type 

and mutant fragments rely heavily on the positioning and sequence of the probe.14,15 Co-
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amplification at lower denaturation temperature (COLD) PCR can also limit co-amplification of 

wild-type DNA by carefully optimizing the annealing temperature to ensure that wild-type DNA 

remains a duplex during the annealing and extension step.16 While COLD-PCR is useful for 

selectively amplifying known and unknown mutations, the critical temperature of the mutant 

fragment must be lower than the wild-type DNA for selective amplification, which prevents 

approximately 30% of all mutations from being detected.17 In addition, all PCR methods require 

highly pure DNA for amplification to occur, and blood and plasma components such as IgG or 

hemoglobin can inhibit PCR.18,19 Therefore, sequence-specific DNA extraction step is needed in 

order to limit the co-extraction of non-target DNA and PCR inhibitors. 

Sequence-specific DNA extractions can supplement PCR amplification by preventing 

large amounts of background DNA from contaminating the reaction. Commercial methods for 

such extractions often rely on streptavidin-coated magnetic beads and biotinylated 

oligonucleotides.1,20,21 Target DNA can be captured using streptavidin-coated magnetic beads 

due to streptavidin’s exceptional affinity for biotin (Kd = 4 × 10-14 M).22 However, streptavidin-

coated magnetic beads are prone to aggregation and sedimentation, which can reduce extraction 

efficiencies and clog microfluidic devices.23,24 Other sequence-specific extraction methods 

include the use of oligonucleotide-modified monoliths; however, these procedures can currently 

achieve picomolar detection limits where most ctDNA fragments are present at femtomolar 

concentrations or lower.25-27 Oleoyl-modified oligonucleotides have also been used for sequence-

specific DNA extractions. DNA can be selectively hybridized to the oleoyl-modified 

oligonucleotide and be contained within reverse micelles of diauroylphosphatidylcholine and 1-

hexanol.28 It was demonstrated that over 60% of the target DNA was extracted using the oleoyl-

modified oligonucleotides whereas only 6% and 4% of the 1 nt and 2 nt mismatch fragments, 



www.manaraa.com

33 

 

respectively, were extracted. However, a lengthy extraction step (i.e., 3 h) is required to form the 

reverse micelles as significant agitation can disrupt the interface between the aqueous and 

organic phases. In addition, this method has never been used to extract clinically-relevant 

concentrations of ctDNA nor has it been applied to a complex matrix. 

A recent and promising alternative to commercial sequence-specific DNA extraction 

approaches is the use of magnetic ionic liquids (MILs).29 MILs are a subclass of ionic liquids 

(ILs) that contain a paramagnetic component in either the cation or anion allowing them to be 

dispersed as droplets and be rapidly collected using an external magnet.30,31 Hydrophobic 

manganese(II)-based MILs, in particular, have been found to poorly extract DNA with extraction 

efficiencies less than 2%.29,32,33 A series of DNA extraction probes termed ion-tagged 

oligonucleotides (ITOs) have been designed to contain an imidazolium headgroup that interacts 

with a manganese(II)-based MIL solvent support through hydrophobic interactions, π-π stacking, 

and fluorophilic interactions.29,34 Recent efforts have focused on improving loading of the ITO-

DNA duplex to the MIL support though the use of disubstituted ion-tagged oligonucleotides 

(DTOs), which contain two imidazolium headgroups capable of interacting with the MIL 

through hydrophobic interactions.34 Another recent study developed a dispersive ITO-MIL 

method that drastically decreased the sample preparation time by dispersing the MIL using a 

vortex and incorporating DNA-enriched MIL into the qPCR buffer, allowing for a 19-fold 

enrichment of target DNA.33 

Despite significantly higher loading efficiencies associated with the DTO, both the ITO 

and DTO probes extract similar amounts of DNA under optimized extraction conditions.34 

However, it still remains unclear as to whether the DTO and ITO probes exhibit similar DNA 

extraction performances from complex matrices such as plasma and whole blood. In addition, 
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there has been little optimization of the desorption step in the ITO/DTO-MIL procedure, as 

previous methods have relied on either a time-consuming 10 min desorption step at 90 °C or 

desorption of DNA during qPCR amplification, which is restricted by the temperature program 

and buffer conditions required for PCR.29,33-35 This study examines the sequence-specific 

extraction of KRAS DNA from 10-fold diluted plasma, 2-fold diluted plasma, and 10-fold diluted 

whole blood using both ITO and DTO probes. In addition, the desorption time and ionic strength 

of the desorption solution were optimized to ensure maximum recovery of target DNA from the 

MIL. The ITO/DTO-MIL method was found to be selective when performing extractions from 

saline (154 mM NaCl), 10-fold diluted plasma, 2-fold diluted plasma, and 10-fold diluted blood. 

However, the DTO probes were significantly more advantageous in extractions from 2-fold 

diluted plasma and 10-fold diluted whole blood whereas the ITO probes extracted more DNA 

from saline compared to DTOs. These results suggest that the DTO-MIL procedure is highly 

versatile and capable of selectively preconcentrating femtomolar levels of target DNA from very 

complex samples that contain high amounts of protein and background DNA whereas the ITO 

probe excels when performing extraction from samples with elevated ionic strength. 

3.3 Methods and materials 

3.3.1 Materials and Reagents 

Ammonium hydroxide (28-30% solution in water), 1,1,1,5,5,5-hexafluoroacetylacetone 

(99%), 1-phenyl-4,4,4-trifluoro-1,3-butanedione (99%), and trioctylamine (97%) were purchased 

from Acros Organics (Morris Plains, NJ, USA). Manganese(II) chloride tetrahydrate (98.0-

101.0%) was purchased from Alfa Aesar (Ward Hill, MA, USA). Anhydrous diethyl ether 

(99.0%) was purchased from Avantor Performance Materials Inc. (Center Valley, PA, USA). 

Trihexyl(tetradecyl)phosphonium chloride (97.7%) was purchased from Strem Chemicals 

(Newburyport, MA, USA). Ammonium persulfate (APS) (≥98.0%), allyl bromide, 
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ethylenediaminetetraacetic acid (EDTA) (99.4-100.06%), 1-bromooctane (99%), 

benzylimidazole (99%), triethylamine (≥99.5%), sodium octylsulfate ([OS−]) (>95%), Tween 20, 

LC-MS grade acetonitrile (ACN) (≥99.9%), lyophilized plasma from human (4% trisodium 

citrate), potassium hexafluorophosphate ([PF6
−]) (≥99%), and magnesium chloride hexahydrate 

(99.0-102.0%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). SYBR Green I 

(10,000x) was purchased from Life Technologies (Carlsbad, CA, USA). Proteinase K was 

purchased from New England Biolabs (Ipswich, MA, USA). Tris(hydroxymethyl)aminomethane 

(Tris) hydrochloride (HCl), urea (>99%) and tris(2-carboxyethyl)phosphine (TCEP) (>98%) 

were purchased from P212121 (Ypsilanti, MI, USA). SsoAdvanced Universal SYBR Green 

Supermix (2x), 40% acrylamide, bis-acrylamide solution 29:1, tetramethylethylenediamine 

(TEMED), and KRAS, a human PrimePCR™ SYBR green assay (120 base pair amplicon), were 

purchased from Bio-Rad Laboratories (Hercules, CA, USA). Cyclic disulfide-modified, thiol-

modified, biotinylated, and unmodified oligonucleotides were purchased from Integrated DNA 

Technologies (Coralville, IA, USA). PCR caps, tube strips, sodium chloride, fresh human whole 

blood, and Dynabeads Steptavidin M – 270 magnetic beads were purchased from Thermo Fisher 

Scientific (Waltham, MA, USA). Neodymium rod (0.66 T) and cylinder magnets (0.9 T) were 

purchased from K&J Magnetics (Pipersville, PA, USA). Deionized water (18.2 MΩ cm), 

obtained from a Milli-Q water purification system, was used to prepare all aqueous solutions 

(Millipore, Bedford, MA, USA). 

3.3.2 Synthesis and characterization of DTOs, ITOs, and MILs 

The trihexyl(tetradecyl)phosphonium ([P66614
+]) tris(hexafluoroacetylaceto)manganate(II) 

([Mn(hfacac)3
−]), [P66614

+] tris(phenyltrifluoroacetylacetomanganate(II)) ([Mn(Phtfacac)3
−]), 

trioctylbenzylammonium ([N888Bz
+]) [Mn(hfacac)3

−], and [N888Bz
+] 

bis(hexafluoroacetylaceto)phenyltrifluoroacetylacetomanganate(II) ([Mn(hfacac)2(Phtfacac)−]) 
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MILs were synthesized and characterized as previously reported.33,36-38 MIL structures are shown 

in Figure 3.1. When not in use, all four MILs were stored at room temperature in a desiccator. 

 

Figure 3.1 Chemical structures of the (1) [P66614
+][Mn(hfacac)3

−], (2) [P66614
+][Mn(Phtfacac)3

−], 

(3) [N888Bz
+][Mn(hfacac)3

−], and (4) [N888Bz
+][Mn(hfacac)2(Phtfacac)−] MILs examined in this 

study. 

 

The 1-allyl-3-octylimidazolium bromide ([AOIM+][Br−]), 1-allyl-3-decylimidazolium 

bromide ([ADIM+][Br−]), and 1-allyl-3-benzyllimidazolium bromide ([ABzIM+][Br−]) ILs were 

synthesized as previously reported.29 In addition, all ITOs and DTOs were also synthesized as 

previously reported.29,34 Briefly, 4 nmol of the thiol-modified oligonucleotide or 2 nmol of the 

cyclic disulfide-modified oligonucleotide was reduced using 40 nmol of TCEP. Subsequently, 

400 nmol of either the [AOIM+][Br−], [ADIM+][Br−], or [ABzIM+][Br−] salt (30% v/v ACN) was 

reacted with the reduced oligonucleotide under nitrogen (N2) at 365 nm UV light for 

approximately 120 min. A NotePal X-slim Cooler Master (New Taipei City, Taiwan) was used 
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to cool the reaction to prevent solvent evaporation. The product was isolated using 

polyacrylamide gel electrophoresis (PAGE) and recovered by crushing the gel and eluting with 

water. 

ITOs and DTOs were characterized using reversed-phase ion-pair liquid chromatography 

coupled to time-of-flight mass spectrometry (TOF-MS) on an Agilent 1260 Infinity high 

performance liquid chromatograph (HPLC) with a diode array detector coupled to an Agilent 

6230B TOF mass spectrometer with an electrospray source. ITOs and DTOs were separated on a 

50 mm × 2.1 mm i.d. × 1.8 mm particle size Zorbax Extend C18 column purchased from Agilent 

Technologies (Santa Clara, CA, USA). Mobile phase A contained 5 mM triethylammonium 

acetate (pH 7.4) and mobile phase B was ACN. The column was equilibrated for 20 min at 0.2 

mL min−1 at 5% B. Gradient separation of ITO products was performed using the following 

program: 5% B from 0 to 5 min, increased from 5% to 19.4% B from 5 to 17 min, increased 19.4 

− 35% B from 17 to 18 min, held at 35% B from 18 to 20 min, increased 35% B to 100% B from 

20 to 30 min, and held at 100% B from 30 to 33 min. After each separation, the column was 

equilibrated at 5% B for 7 min prior to subsequent injections. The LC eluent was diverted to 

waste for the first 8 min to prevent non-volatile imidazolium salts and urea from entering the 

mass spectrometer. Nebulizing gas was set to 35 psi, and the drying gas (N2) flow rate was 9 L 

min−1 at 350 °C using a capillary voltage of 4000 V. Spectra were acquired from 100 to 3000 

m/z with a scan rate of 1 spectrum sec−1. ITO and DTO structures are shown in Figure 3.2. The 

extracted ion chromatograms and mass spectra of the [AOIM+]2-KRAS 2[Br−], [ADIM+]2-KRAS 

2[Br−], and [ABzIM+]2-KRAS 2[Br−] DTOs are shown in Figure B1 (Appendix B). 
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Figure 3.2 Chemical structures of the imidazolium-based ion tags associated with the (A-B) 

ITOs and (C-E) DTOs examined in this study. 

 

3.3.3 Loading efficiency of ITOs and DTOs to the hydrophobic MIL 

The stability of the interaction between the ITO/DTO-DNA duplex and MIL was 

determined by anion exchange chromatography using an Agilent 1260 HPLC with variable 

wavelength detection. First, 2 ppm of the DNA extraction probe was hybridized with 2 ppm of 

its complementary sequence in 25 mM NaCl by heating at 90 °C for 5 min then cooling to 4 °C 
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for 5 min. The ITO/DTO-DNA duplex was incubated for 10 min at room temperature with 1 µL 

of MIL. After this, 20 µL of the aqueous solution was injected onto a 35 mm × 4.6 mm i. d. × 2.5 

µm TSKgel DEAE-NPR anion exchange column with a 5 mm × 4.6 mm i. d. × 5 µm TSKgel 

DEAE-NPR guard column from Tosoh Bioscience (King of Prussia, PA). Mobile phase A 

consisted of 20 mM Tris-HCl (pH 8) and mobile phase B was 20 mM Tris-HCl and 1 M NaCl 

(pH 8). The column was equilibrated with mobile phase A at 0.5 mL min−1 for 20 min prior to 

injection. Gradient elution was performed with the following program: increased from 0 to 50% 

B from 0 to 10 min, increased to 100% B from 10 min to 15 min, held at 100% B from 15 min to 

20 min, decreased to 0% B from 20 min to 22 min, held at 0% B from 22 min to 30 min. 

3.3.4 qPCR conditions 

Quantitative PCR (qPCR) was achieved using 1x Sso Supermix and 1x PrimePCR assay 

mix with a final volume of 20 µL. Addition of 0.3 µL [P66614
+][Mn(hfacac)3

−] MIL to the qPCR 

buffer required 1x Sso Supermix and 1x PrimePCR assay mix, 4 mM EDTA, and an additional 

1x SYBR Green I to relieve inhibition caused by the MIL. Direct MIL-qPCR amplification using 

the [N888Bz
+][Mn(hfacac)3

−] MIL required 1x Sso Supermix and 1x PrimePCR assay mix, 

additional 6.25 mM MgCl2, 4 mM EDTA, and an additional 0.4x SYBR Green I. A 20 µL qPCR 

containing 0.3 µL of the [N888Bz
+][Mn(hfacac)2(Phtfacac)−] MIL required 1x Sso Supermix and 

1x PrimePCR assay mix, an additional 2.5 mM MgCl2, 2 mM EDTA, and an additional 1x 

SYBR Green I. Amplification was achieved on a Bio-rad CFX 96 qPCR using the following 

cycling protocol: 2 min initial denaturation at 95 °C followed by 40 cycles comprised of a 5 s 

denaturation step at 95 °C, a 30 s annealing step at 60 °C, and an optical detection step. 

Quantification cycles (Cq) were determined using the Bio-Rad CFX Maestro software. A 

standard curve was constructed for the KRAS template, as shown in Figure B2, and used to 

determine the amount of target extracted using the ITO-MIL procedure. Enrichment factors (Ef) 
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were determined using Equation 3.1 where CMIL is the amount of DNA extracted by 0.3 µL of 

MIL and Cstd is the amount of DNA present in a 0.3 µL of the solution prior to the extraction. 

Ef =  
CMIL

Cstd
    Equation 3.1 

 

3.3.5 Extraction of target DNA 

Static extractions were used to selectively extract high concentrations of target DNA 

using previously published methods, with slight modifications.29,34 Briefly, 7.2 × 107 copies µL−1 

(112 pM) of target DNA was hybridized to either 3.6 × 108 copies µL−1 of DTO or 7.2 × 108 

copies µL−1 of ITO by heating the solution at 90 °C for 5 min to denature double-stranded DNA 

followed by cooling to 4 °C for 5 min. After hybridization, 1 µL of MIL was added to the sample 

for 10 min at room temperature. Subsequently, the MIL was washed with water to remove non-

specifically adsorbed DNA and inhibitors from the surface of the MIL. Target DNA was 

subsequently desorbed in 50 µL of 25−400 mM NaCl at 90 °C for 1−10 min. 

Dispersive extractions were achieved using the previously optimized method with a DTO 

probe to target ratio of 5:1 and ITO probe to target ratio of 10:1.33,34 Briefly, 4, 6, or 8 µL of the 

[N888Bz
+][Mn(hfacac)2(Phtfacac)−], [N888Bz

+][Mn(hfacac)3
−], and [P66614

+][Mn(hfacac)3
−] MILs, 

respectively, were dispersed in a 1 mL solution containing 2 × 104 copies µL−1 (33 fM) of KRAS 

DNA using a vortex (Barnstead International, Dubuque, IA). After a 1 or 3 min dispersion, the 

MIL was collected using a 0.66 T rod magnet, and 0.3 µL of the recovered MIL was added to 

qPCR buffer. 

Extractions using the M−270 streptavidin-coated magnetic beads were performed as 

recommended by the manufacturer. Prior to every extraction, 10 µg of magnetic beads were 

washed three times with 5 mM Tris-HCl, 0.5 mM EDTA, and 1 M NaCl (pH 7.5). All DNA 
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extractions consisted of 10:1 biotinylated probe to target ratio in 25 mM NaCl. The sample was 

initially heated at 90 °C for 5 min then cooled to 4 °C for 5 min to anneal the biotinylated probe 

to the target. Samples were subsequently agitated at 60 rpm or 250 rpm for extractions of 7.2 × 

107 and 2 × 104 copies µL−1 KRAS, respectively, on an orbital shaker for 10 min to disperse the 

beads and minimize sedimentation. The beads were collected using a 0.9 T magnet and washed 

three times with a solution consisting of 5 mM Tris-HCl, 0.5 mM EDTA, and 1 M NaCl (pH 

7.5). DNA was desorbed from the beads in 20 µL water by heating to 90 °C for 10 min. 

Target KRAS DNA was spiked into plasma and whole blood matrices. Plasma samples 

were diluted using water whereas whole blood was diluted in saline in order to prevent settling of 

cellular debris prior to the extraction. The amount of total genomic DNA in whole blood was 

determined using the QIAmp DNA mini-prep kit following procedures suggested by the 

manufacturer. 

3.3.6 Statistical analysis 

The Student t-test was used to determine whether the DTO or ITO probe was extracting 

significantly more DNA. Selectivity was also determined using the Student t-test by comparing 

the extractions with and without a DNA extraction probe. Probability values (p-values) were 

determined from the t-test results, and a significance level of 0.05 was chosen. Therefore, if the 

p-value is less than 0.05, the two data sets were considered statistically different. 

3.4 Results and discussion 

3.4.1 Synthesis of novel DTO probes 

Since ITO and DTO probes can interact with the MIL through hydrophobic interactions, 

incorporation of longer alkyl chain substituents within the probe would be expected to improve 

the amount of DNA loaded to the MIL. Previously, an [AOIM+][Br−] ITO specific to a 261 bp 

DNA sequence was capable of achieving a modest loading efficiency of 48 ± 4% with the 
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[P66614
+][Mn(hfacac)3

−] MIL; however, increasing the alkyl chain by just two carbons 

significantly improved the loading efficiency to 75 ± 5%.34 In this study, a novel DTO 

containing two decyl-imidazolium headgroups was synthesized to further improve the loading 

efficiency of the probe to the MIL. Attempts to synthesize a DTO with alkyl chains longer than 

ten carbon atoms resulted in the allylimidazolium cation reacting with only one of the two thiol 

groups, as shown using MS (Figure B3). The incomplete reaction maybe due to the imidazolium 

salt exhibiting surfactant-like properties and forming aggregates with the cyclic disulfide-

modified oligonucleotide.39 

In order to identify the optimum ITO and DTO for loading target DNA to the MIL, the 

loading efficiency of four ITOs and seven DTOs to three hydrophobic MILs was studied, as 

shown in Figure 3.3. The [AOIM+]-KRAS [PF6
−] ITO (56.94 ± 1.61%) provided the highest 

loading efficiency to the [P66614
+][Mn(hfacac)3

−] MIL whereas there was no significant difference 

in loading efficiencies observed for the [ADIM+]2-KRAS 2[Br−] (87.65 ± 2.21%) and [ADIM+]2-

KRAS 2[OS−] DTOs (83.56 ± 5.06%). For the [N888Bz
+][Mn(hfacac)3

−] MIL, the [ABzIM+]-KRAS 

[Br−] ITO (65.94 ± 9.55%) produced the highest loading and there was no significant difference 

in loading for the [ADIM+]2-KRAS [Br−] (86.28 ± 4.39%), [ADIM+]2-KRAS [PF6
−] (94.28 ± 

2.47%), and [ABzIM+]2-KRAS [Br−] DTOs (89.2 ± 2.68%). Based on the Student t-test, there 

was no significant advantage in loading of the DNA extraction probe to the 

[N888Bz
+][Mn(hfacac)2(Phtfacac)−] MIL using either the [AOIM+]2-KRAS 2[Br−] (56.91 ± 7.67%) 

or [ADIM+]2-KRAS 2[Br−] DTOs (60.83 ± 3.95%). Among the ITOs and DTOs examined, the 

[ABzIM+]-KRAS [Br−] ITO (53.69 ± 2.27%) produced the highest loading efficiency using the 

[N888Bz
+][Mn(hfacac)2(Phtfacac)−] MIL. 
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Figure 3.3 Loading efficiencies of the ITO and DTO probes to the (a) [P66614
+][Mn(hfacac)3

−], 

(b) [N888Bz
+][Mn(hfacac)3

−] and (c) [N888Bz
+][Mn(hfacac)2(Phtfacac)−] MILs. ITO or DTO 

concentration: 2 ng µL−1; KRAS complement: 2 ng µL−1; NaCl concentration: 25 mM; sample 

volume: 60 µL; MIL volume: 1 µL; extraction time: 10 min. 

 

It was previously reported that ITOs containing the [OS−] anion exhibited superior 

loading to the MIL solvent compared to [Br−], bis[(trifluoromethyl)sulfonyl]imide, or 
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perfluorobutanesulfonate anions suggesting that the anion plays an important role in facilitating 

the capture of the ITO by the MIL.34 Therefore, replacing the [Br−] anion within the DTO 

structure with the amphiphilic [OS−] anion should improve the loading of the DTO probe to the 

MIL. However, introducing the [OS−] anion to the DTO did not significantly improve the 

loading efficiency. Utilizing the [PF6
−] anion to facilitate fluorophilic interactions between the 

DTO and MIL also did not improve the loading of the probe to the MIL. These results suggest 

that the anion component of the DTO plays a less important role in facilitating interactions 

between the DTO and the MIL compared to the ITO probe. Interestingly, the [ABzIM+]2-KRAS 

2[Br−] DTO showed relatively low loading to the [P66614
+][Mn(Phtfacac)3

−] (17.21 ± 1.70%) and 

[N888Bz
+][Mn(hfacac)2(Phtfacac)−] (14.23 ± 0.91%) MILs. The [ABzIM+]2-KRAS 2[Br−] DTO 

was effective at loading to the [N888Bz
+][Mn(hfacac)3

−] MIL and the [ABzIM+]-KRAS [Br−] ITO 

exhibited the highest loading efficiencies for the [N888Bz
+][Mn(hfacac)3

−] and 

[N888Bz
+][Mn(hfacac)2(Phtfacac)−] MILs. These results suggest that exploiting π-π stacking 

interactions with the DTOs is effective when the aromatic moieties are only in the cation. 

3.4.2 Distinguishing SNPs from target DNA using ITO and DTO probes 

In blood plasma samples, especially with late stage cancer patients, there are large 

amounts of non-target background DNA fragments (ranging from 0 to 100 pM) that can 

potentially be coextracted.27 In addition, ctDNA fragments are prone to SNPs and require great 

care to ensure that only the desired sequence is detected. To evaluate the effect interfering DNA 

has on the annealing of target DNA to the extraction probe, extractions from samples containing 

7.2 × 107 copies µL−1 of 20 nt complement, 1 nt mismatch, or 2 nt mismatch fragments (i.e., 1:1 

ratio with target DNA) were performed using the [P66614
+][Mn(hfacac)3

−] MIL and streptavidin 

coated magnetic beads. Without interfering fragments present, the [ADIM+]2-KRAS 2[Br−] and 

[ADIM+]2-KRAS 2[OS−] DTOs extracted the most DNA (target capture Cq of 21.13 ± 0.30 and 
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21.28 ± 0.05, respectively). The addition of a 20 nt complementary sequence to the sample 

resulted in a higher target capture Cq indicating that less of the 120 bp target was extracted, as 

shown in Figure B4. These results suggest that the complementary fragment competed with the 

120 bp amplicon for the probe causing lower DNA recoveries. The addition of either 1 or 2 nt 

mismatch fragments to the sample solution did not significantly increase the target capture Cq 

when using the [AOIM+]2-KRAS [PF6
−], [ABzIM+]-KRAS [Br−], [AOIM+]2-KRAS 2[Br−], 

[AOIM+]2-KRAS 2[OS−], [ADIM+]2-KRAS 2[Br−], and [ADIM+]2-KRAS 2[OS−] extraction 

probes. This suggests that the 1 nt and 2 nt mismatch fragments are not interfering with the 

annealing of target DNA to the probe. 

The streptavidin-coated magnetic beads also experienced an increase in target capture Cq 

when performing extractions in the presence of a 20 nt complement. However, the target capture 

Cq also increased when performing extractions with 1 nt and 2 nt mismatch fragments spiked in 

the sample. This increase suggests that the biotinylated probe is annealing to the 1 and 2 nt 

mismatch fragment and, therefore, reducing the amount of target DNA that can be captured. 

3.4.3 Optimization of the desorption step 

Although there has been a significant amount of work performed to improve the loading 

efficiency of the ITO-DNA duplex to the MIL, few studies have evaluated the desorption step. 

Therefore, the desorption time and ionic strength of the desorption solution were optimized to 

improve the recovery of DNA from the [P66614
+][Mn(hfacac)3

−], [N888Bz
+][Mn(hfacac)3

−], and 

[N888Bz
+][Mn(hfacac)2(Phtfacac)−] MILs. As shown in Figure B5, an optimum desorption time of 

4 min was achieved for the [P66614
+][Mn(hfacac)3

−] and [N888Bz
+][Mn(hfacac)2(Phtfacac)−] MILs, 

and an optimum desorption time of 4 min and 8 min was achieved for the 

[N888Bz
+][Mn(hfacac)3

−] MIL with the ITO and DTO probe, respectively. Less DNA was 

recovered after longer desorption times likely due to DNA adsorbing to the polypropylene tube.40 
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Therefore, 0.05% Tween 20 was added to the desorption solution in an effort to minimize 

adsorption. A 4 min desorption time was chosen as optimum due to the high amount of DNA 

recovered using all three MILs, while still maintaining a short desorption time. In addition, the 

presence of NaCl greatly promoted the desorption of DNA, as shown in Figure B6. The optimum 

concentration of NaCl was 100 mM for the [P66614
+][Mn(hfacac)3

−] MIL, 200 mM for the 

[N888Bz
+][Mn(hfacac)3

−] MIL, and 50 mM for the [N888Bz
+][Mn(hfacac)2(Phtfacac)−] MIL. There 

was no significant difference between the amount of DNA detected when ITO and DTO were 

used to extract DNA if desorbing at higher ionic strength. This suggests that electrostatic 

interactions between the ITO or DTO and the MIL may also play a role in the capture of the 

ITO/DTO-DNA duplex. 

Recent studies have exploited the elevated temperatures required for PCR to desorb DNA 

from the MIL solvent during the reaction.32,33,41 Adding DNA-enriched MIL to the PCR buffer is 

highly beneficial as it reduces the number of sample handling steps, allowing for higher sample 

throughput and minimizes the possibility of contamination. Interestingly, despite similar target 

capture Cqs being achieved with the DTO and ITO probes using 25−400 mM NaCl as a 

desorption solution, lower target capture Cqs and higher Ef were achieved using the ITOs when 

desorbing in 1x Sso Supermix, as shown in Figures B7 and B8. 

3.4.4 Sequence-specific DNA extractions from complex matrices 

Several reported sequence-specific DNA extraction procedures isolate total DNA prior to 

an extraction due to the complexity of the sample matrix.20,42 However, this is often very time 

consuming, and an ideal sequence-specific DNA extraction should be capable of selectively 

extracting DNA from complex sample matrices. Previously, the ITO-MIL procedure has been 

applied towards bacterial cell lysate (1.53 × 108 E. coli cells),29 10-fold diluted plasma,33 and 

plant cell lysate.35 However, it has been unclear if either the ITO or DTO probe can extract more  
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Figure 3.4 Target capture Cq associated with the static extraction using the (blue) [ADIM+]2-

KRAS 2[Br−] DTO, (green) highest loading ITO, (orange) biotinylated probe, and (grey) without 

a DNA extraction probe from 10-fold diluted plasma. ITO/DTO-MIL method: KRAS template 

concentration: 7.2 × 107 copies µL−1, amount of [ADIM+]2-KRAS 2[Br−] DTO relative to DNA: 

5:1, amount of [AOIM+]-KRAS [PF6
−] ITO relative to DNA: 10:1, sample volume: 50 µL, MIL 

volume: 1 µL; extraction time: 10 min, desorption time: 4 min, desorption volume: 50 µL. 

Dynabeads M−270 Steptavidin magnetic beads conditions: KRAS template concentration: 2 × 

104 copies µL−1, concentration of biotinylated probe: 332 fM, NaCl concentration: 25 mM, 

extraction time: 10 min; agitation rate: 250 rpm; desorption time: 10 min; desorption volume: 50 

µL. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the Web version of this article.) 

 

DNA from complex matrices. When comparing the extraction of KRAS from 10-fold diluted 

plasma using the DTO or ITO probe, more DNA was detected using the [AOIM+]-KRAS [PF6
−] 

ITO with the [P66614
+][Mn(hfacac)3

−] MIL and the [ADIM+]2-KRAS 2[Br−] DTO probe with the 

[N888Bz
+][Mn(hfacac)3

−] MIL, as shown in Figure 3.4. There was no significant difference 

observed between the [ADIM+]2-KRAS 2[Br−] DTO and [ABzIM+]-KRAS [Br−] ITO probes with 

the [N888Bz
+][Mn(hfacac)2(Phtfacac)−] MIL in 10-fold diluted plasma. At femtomolar 

concentration-levels of target DNA, similar Ef was achieved using either the [ADIM+]2-KRAS 

2[Br−] DTO or [ABzIM+]-KRAS [Br−] ITO probes with the [N888Bz
+][Mn(hfacac)3

−] or 

[N888Bz
+][Mn(hfacac)2(Phtfacac)−] MILs, as shown in Figure 3.5. The [AOIM+]-KRAS [PF6

−] 
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ITO was capable of preconcentrating significantly more DNA from 10-fold diluted plasma 

compared to the [ADIM+]2-KRAS 2[Br−] DTO probe with the [P66614
+][Mn(hfacac)3

−] MIL. 

 

Figure 3.5 Enrichment factors from the dispersive extraction using the (blue) [ADIM+]2-KRAS 

2[Br−] DTO, (green) highest loading ITO, (orange) biotinylated probe, and (grey) without a 

DNA extraction probe from 10-fold diluted plasma. [P66614
+][Mn(hfacac)3

−] MIL conditions: 

amount of [ADIM+]2-KRAS 2[Br−] DTO relative to DNA: 5:1, amount of [AOIM+]-KRAS [PF6
−] 

ITO relative to DNA: 10:1, NaCl concentration: 25 mM, sample volume: 1.0 mL, extraction 

time: 3 min [N888Bz
+][Mn(hfacac)3

−] MIL conditions: amount of [ADIM+]2-KRAS 2[Br−] DTO 

relative to DNA: 5:1, amount of [ABzIM+]-KRAS [Br−] relative to DNA: 10:1, NaCl 

concentration: 25 mM, sample volume: 1.0 mL, extraction time: 1 min 

[N888Bz
+][Mn(hfacac)2(Phtfacac)−] MIL conditions: amount of [ADIM+]2-KRAS 2[Br−] DTO 

relative to DNA: 5:1, amount of [ABzIM+]-KRAS [Br−] relative to DNA: 10:1, NaCl 

concentration: 25 mM, sample volume: 1.0 mL, extraction time: 1 min. Dynabeads M−270 

Steptavidin magnetic beads conditions: concentration of biotinylated probe: 332 fM; extraction 

time: 10 min; agitation rate: 250 rpm; desorption time: 10 min; desorption volume: 20 µL. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the Web 

version of this article.) 

 

Selective preconcentration of 2 × 102 and 2 × 103 copies µL−1 (0.33 and 3.3 fM, 

respectively) of KRAS from 10-fold diluted plasma was achieved using the ITO and DTO probes, 

as shown in Figure B9. However, based on the Student t-test there was no significant difference 

in Ef using the DTO or ITO at these concentrations suggesting that both probes function 

similarly at enriching low concentrations of DNA. When performing extractions of 2 × 102 
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copies µL−1 of KRAS from 10-fold diluted plasma, the [N888Bz
+][Mn(hfacac)3

−] and 

[N888Bz
+][Mn(hfacac)2(Phtfacac)−] MILs exhibited slight preconcentration of DNA suggesting 

that the selectivity of the ITO/DTO-MIL method worsens as the concentration of target DNA 

decreases. Interestingly, extractions of either 7.2 × 107 or 2 × 104 copies µL−1 KRAS DNA from 

10-fold diluted plasma using streptavidin-coated magnetic beads were not selective. It is possible 

that free biotin naturally found in plasma blocks binding sites on the beads or that the 

biotinylated probe is binding to plasma proteins.43-45 

Previous studies have shown that imidazolium ILs that contain longer alkyl chain 

substituents (i.e., octyl chain length) interact more with proteins.46 In the case of the ITO/DTO-

procedure, the longer alkyl chains are used to improve loading of the probe-DNA duplex to the 

hydrophobic MIL; however, it is unclear if certain ITOs or DTOs strongly interact with plasma 

proteins instead of the MIL. Therefore, extractions from 10-fold diluted plasma were performed 

using the [ADIM+]2-KRAS 2[Br−] and [ABzIM+]2-KRAS 2[Br−] DTOs with the 

[N888Bz
+][Mn(hfacac)3

−] MIL and the [ADIM+]2-KRAS 2[Br−] and [ADIM+]2-KRAS 2[OS−] 

DTOs with the [P66614
+][Mn(hfacac)3

−] MIL. These DTOs were chosen because they exhibited 

similar loading efficiencies and, therefore, should extract similar amounts of DNA. As shown as 

Figure B10, the target capture Cqs associated with the extractions using the [ADIM+]2-KRAS 

2[Br−] and [ABzIM+]2-KRAS 2[Br−] DTOs with the [N888Bz
+][Mn(hfacac)3

−] and the [ADIM+]2-

KRAS 2[Br−] and[ADIM+]2-KRAS 2[OS−] DTOs with the [P66614
+][Mn(hfacac)3

−] MIL were 

within error. The target capture Cqs suggest that the different DTO probes suffer from similar 

matrix effects due to the plasma components. 

Diluting the sample matrix can be beneficial as it decreases the concentration of PCR 

inhibitors and reduces the amount of protein aggregates. However, diluting the sample matrix 
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also decreases the concentration of DNA making it more challenging to detect low abundance 

mutations. Therefore, ITO/DTO-MIL extractions from 2-fold diluted plasma were investigated. 

Selective extractions from 2-fold diluted plasma were achieved for all three MILs, as shown in 

Figure B11. However, extractions using the DTO probe produced lower target capture Cqs 

compared to extractions using the ITO probes, possibly due to stronger interactions between the 

probe and hydrophobic MIL. The streptavidin-coated magnetic beads were capable of selective 

extraction in 2-fold diluted plasma whereas previously the extractions with and without the 

biotinylated probe in 10-fold diluted plasma were within error of one another. This may be 

linked to the significant amount of protein aggregation that occurs during the annealing step with 

2-fold diluted plasma. Protein precipitation could limit the amount of biotinylated probe that 

interacts with soluble plasma proteins and allow for higher DNA recoveries.43 

In most ctDNA sample preparation methods, ctDNA is extracted from plasma instead of 

whole blood due to the high probability of contaminating the sample with genomic DNA from 

circulating cells.47,48 To ensure that plasma is cell-free, a lengthy double centrifugation step is 

required.47,48 In addition, the process of generating plasma from blood removes circulating cell 

surface-bound DNA from analysis, which can aid cancer diagnosis and monitoring.49 Therefore, 

the ITO/DTO-MIL method was applied towards the extraction of KRAS from 10-fold diluted 

whole blood to examine if selective extraction could be achieved. When performing ITO/DTO-

MIL extractions from 10-fold diluted blood at picomolar levels of DNA, selective extraction was 

achieved using the [P66614
+][Mn(hfacac)3

−] and [N888Bz
+][Mn(hfacac)3

−] MILs, as shown in 

Figure 3.6. However, selective extraction could not be achieved using the [ABzIM+]-KRAS [Br−] 

ITO with the [N888Bz
+][Mn(hfacac)2(Phtfacac)−] MIL or the magnetic beads. Selective extraction 

using the magnetic beads could only be achieved when diluting the blood 40-fold, as shown in  
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Figure 3.6 Target capture Cq obtained from static extraction using the (blue) [ADIM+]2-KRAS 

2[Br−] DTO, (green) highest loading ITO, and (orange) biotinylated probe compared to 

extractions (grey) without a DNA extraction probe from 10-fold diluted blood. ITO/DTO-MIL 

method: KRAS template concentration: 7.2 × 107 copies µL−1, amount of [ADIM+]2-KRAS 2[Br−] 

DTO relative to DNA: 5:1, amount of [AOIM+]-KRAS [PF6
−] ITO relative to DNA: 10:1, sample 

volume: 50 µL, MIL volume: 1 µL; extraction time: 10 min, desorption time: 4 min, desorption 

volume: 50 µL. Dynabeads M−270 Steptavidin magnetic beads conditions: KRAS template 

concentration: 7.2 × 107 copies µL−1, concentration of biotinylated probe: 7.2 × 108 copies µL−1; 

extraction time: 10 min; agitation rate: 250 rpm; desorption time: 10 min; desorption volume: 50 

µL. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the Web version of this article.) 

 

Figure B12. It was also possible to achieve selective extraction using the streptavidin-coated 

magnetic beads by proteinase K treatment at 56 °C for 15 min prior to annealing the probe to 

target DNA, as shown in Figure 3.7. In this procedure, the sample was also filtered to remove 

cellular debris and precipitated proteins before the magnetic beads were added. It was found that 

the [N888Bz
+][Mn(hfacac)2(Phtfacac)−] MIL was unable to selectively extract target DNA due to 

the saline solution used to dilute whole blood, as shown in Figure B13. Extractions from saline 

using the [P66614
+][Mn(hfacac)3

−] or [N888Bz
+][Mn(hfacac)3

−] MILs resulted in higher target 

capture Cqs when compared to extractions performed from pure water, possibly due to the higher 

ionic strength increasing the melting temperature of the target DNA. The ITO probes were 
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capable of extracting more DNA from saline compared to the DTO, but all extractions from 

saline with the [P66614
+][Mn(hfacac)3

−] or [N888Bz
+][Mn(hfacac)3

−] MILs were selective. 

 

Figure 3.7. Enrichment factor produced from the dispersive extraction of KRAS target using the 

(blue) [ADIM+]2-KRAS 2[Br−] DTO,  (green) highest loading ITO, and (orange) biotinylated 

probe compared to extractions (grey) without a DNA extraction probe from 10-fold diluted 

blood. [P66614
+][Mn(hfacac)3

−] MIL conditions: amount of [ADIM+]2-KRAS 2[Br−] DTO relative 

to DNA: 5:1, amount of [AOIM+]-KRAS [PF6
−] ITO relative to DNA: 10:1, NaCl concentration: 

25 mM, sample volume: 1.0 mL, extraction time: 3 min [N888Bz
+][Mn(hfacac)3

−] MIL conditions: 

amount of [ADIM+]2-KRAS 2[Br−] DTO relative to DNA: 5:1, amount of [ABzIM+]-KRAS [Br−] 

relative to DNA: 10:1, NaCl concentration: 25 mM, sample volume: 1.0 mL, extraction time: 1 

min. Dynabeads M−270 Steptavidin magnetic beads conditions: concentration of biotinylated 

probe: 332 fM, extraction time: 10 min; agitation rate: 250 rpm; desorption time: 10 min; 

desorption volume: 20 µL. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the Web version of this article.) 

 

When performing extractions from clinically-relevant concentrations of ctDNA, selective 

extraction using either the ITO or DTO probes was achieved with the [P66614
+][Mn(hfacac)3

−] and 

[N888Bz
+][Mn(hfacac)3

−] MILs, as shown in Figure 3.7. However, the DTO preconcentrated 

significantly more DNA compared to the ITO in whole blood matrices possibly due to stronger 

interactions between the probe and MIL during the extraction and washing steps. When 

performing extractions at 2 × 102 and 2 × 103 copies µL−1  (mutation abundance of 0.009% and 

0.09%, respectively) with the [P66614
+][Mn(hfacac)3

−] and [N888Bz
+][Mn(hfacac)3

−] MILs, 
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selective preconcentration of target DNA could still be achieved using the [ADIM+]2-KRAS 

2[Br−] DTO, as shown in Figure B14. However, extractions of 2 × 102 copies µL−1 KRAS from 

10-fold diluted blood resulted in slight preconcentration when the DTO probe was not present, 

again suggesting that the DTO-MIL method is prone to coextraction under conditions of low 

target DNA concentration. This effect could possibly be limited by designing the MIL to further 

limit DNA extraction. 

3.5 Conclusions 

The ability of the ITO/DTO-MIL method to selectively extract DNA from 2-fold diluted 

plasma, 10-fold diluted plasma, and 10-fold diluted whole blood has been demonstrated. The 

desorption time and ionic strength of the desorption solution were optimized to ensure the 

maximum amount of DNA was desorbed from the MIL in a short amount of time (i.e., 4 min), 

with higher ionic strength significantly facilitating the desorption of DNA from the hydrophobic 

MIL. ITO probes were successful at extracting more DNA in saline compared to DTO probes, 

but DTO probes outperformed ITOs by extracting more DNA from complex biological matrices, 

including 2-fold diluted plasma and 10-fold diluted blood. However, there was no significant 

difference in enrichment factor when performing extractions from 10-fold diluted plasma with 

either the ITO or DTO. In comparison, commercially-available streptavidin-coated magnetic 

beads only exhibited selectivity in 2-fold diluted plasma and 40-fold diluted whole blood without 

labor-intensive sample clean-up steps. The DTO-MIL method represents a simple two-step 

extraction procedure to selectively preconcentrate low concentrations of DNA from increasingly 

complex matrices, suggesting that this method has the potential to be highly valuable in the field 

of ctDNA detection and analysis. 
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4.1 Abstract 

Ribonucleic acid (RNA) is particularly sensitive to enzymatic degradation by 

endonucleases prior to sample analysis. In-field preservation has been a challenge for RNA 

sample preparation. Very recently, hydrophobic magnetic ionic liquid (MIL) has shown 

significant promise in the area of RNA extraction. In this study, MILs were synthesized and 

employed as solvents for the extraction and preservation of RNA in aqueous solution. RNA 

samples obtained from yeast cells were extracted and preserved by the trihexyl(tetradecyl) 

phosphonium tris(hexafluoroacetylaceto)cobaltate(II) ([P66614
+][Co(hfacac)3

-]) and 

trihexyl(tetradecyl) phosphonium tris(phenyltrifluoroacetylaceto)cobaltate(II) 

([P66614
+][Co(Phtfacac)3

-]) MIL with a dispersion of the supporting media, polypropylene glycol, 

average Mn ~ 2000 (PPG-2000), at room temperature for up to 7 and 15 days period, 

respectively. High quality RNA treated with ribonuclease A (RNase A) was recovered from the 

tetra(1-octylimidazole)cobaltate(II) di(L-glutamate) ([Co(OIM)4
2+][Glu-]2) and tetra(1-

octylimidazole)cobaltate(II) di(L-aspartate) ([Co(OIM)4
2+][Asp-]2) MILs after a 24 hour period at 

room temperature. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and 

agarose gel electrophoresis were used to determine the effect of RNA preservation. Furthermore, 

the preservation mechanism was investigated by exploring the partitioning of RNase A into the 

MIL using high-performance liquid chromatography. 
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4.2 Introduction 

Ribonucleic acid (RNA) plays a prominent role in regulating gene expression and 

encoding proteins that are essential for the growth and survival of every living organism.1-3 

Because of its high biological relevance and significant role in gene expression, RNA has 

attracted notable research interest. However, messenger RNA (mRNA)4 and small interfering 

RNA (siRNA)5 are prone to degradation in a variety of ways including denaturation,6 

oxidization,7 and nuclease cleavage.8 For instance, mRNA is particularly prone to rapid 

degradation by ubiquitous ribonucleases (RNases).4 In certain conditions, biological samples 

collected in the field may contain numerous compounds, such as RNase, which can degrade 

RNA instantly. These samples can only be handled by simple in-field treatments and require 

preservation before in-lab analysis.9 Therefore, the isolation of RNA from contaminating RNases 

and subsequent preservation during sample preparation are critical steps in order to maximize the 

yield of pure RNA. Moreover, the isolated RNA must be sufficiently pure for analysis with 

biomolecular techniques such as the reverse transcription polymerase chain reaction (RT-PCR), 

quantitative RT-PCR (qRT-PCR), and Northern Blot analysis.4,10-12  

A number of techniques have been developed that preserve RNA over time and protect it 

from endonuclease degradation in vitro. One of the most commonly used methods is 

diethylpyrocarbonate (DEPC) pretreatment, which can deactivate RNases by forming amide 

bonds between amino and carboxylic groups.13,14 However, DEPC is unstable in aqueous 

solution and can easily react with carbon dioxide or ethanol,15 which limits its use in certain 

applications. Other widely accepted methods include the paraffin-embedded tissue process and 

the formalin fixed paraffin-embedded tissues (FFPE).2,16,17 FFPE is especially preferred in tissue 

sample preparation for downstream analysis involving the polymerase chain reaction (PCR). 

However, formalin can cross-react with proteins in the sample matrix,18 leading to the inhibition 
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of reverse transcription for mRNA.19 In addition, other methods such as lyophilization,20 

formamide protection,21 and numerous RNase inhibitor treatments22-24 have been applied for 

RNA preservation. Unfortunately, drawbacks to these preservation techniques include the 

requirements of specialized equipment, multiple tedious steps, or a high amount of energy. 

Because of the inherent limitations of current methods, it is important to explore the 

development of methods that effectively combine sample preparation and RNA preservation to 

minimize the risk of nuclease contamination and maximize the amount of recovered RNA for 

downstream analysis.  

Recently, ionic liquid (IL)-based materials have been shown to exhibit encouraging 

compatibility in nucleic acid analysis.25,26 ILs are organic molten salts that possess melting points 

at or below 100 °C. Because of their tunable cation and anion structures27,28 and ability to 

interact with a variety of biomolecules,29,30 ILs have demonstrated high potential as nucleic acid 

preservation and extraction solvents.31-33 For instance, imidazolium31 and choline-based25,34 ILs 

have been previously reported in RNA preservation applications. They have been demonstrated 

to preserve RNA by either isolating the target nucleic acid from the sample matrix or by 

maintaining the stability of RNA within the IL.35 Magnetic ionic liquids (MILs) are a subclass of 

ILs that incorporate paramagnetic centers in their chemical structures. Because of their ability to 

be manipulated by an external magnetic field and affinity for biological molecules such as DNA 

and RNA, MILs have drawn considerable research interest for nucleic acid extraction36 and for 

applications requiring automatic operation.37 In a previously published study,38 several MILs 

with different chemical structures were demonstrated to simultaneously extract DNA from 

aqueous solutions while protecting DNA from deoxyribonuclease I (DNase I) degradation.  
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In order to stabilize RNA in a hydrophobic microenvironment and prevent degradation, 

several MILs were designed and synthesized in this study based on previously reported ILs.35,38 

The MILs were investigated for their ability to serve as RNA extraction and preservation media. 

The trihexyl(tetradecyl) phosphonium tris(hexafluoroacetylaceto)cobaltate(II) 

([P66614
+][Co(hfacac)3

-]) and trihexyl(tetradecyl) phosphonium 

tris(phenyltrifluoroacetylaceto)cobaltate(II) ([P66614
+][Co(Phtfacac)3

-]) MILs were dispersed in 

polypropylene glycol (PPG), average Mn ≈ 2000 (PPG-2000). The MIL/PPG-2000 system was 

investigated for the capability of extracting and preserving yeast total RNA from aqueous 

solution which could subsequently be analyzed via the qRT-PCR. In addition, another two MILs, 

namely, tetra(1-octylimidazole)cobaltate(II) di(L-glutamate) ([Co(OIM)4
2+][Glu-]2) and tetra(1-

octylimidazole)cobaltate(II) di(L-aspartate) ([Co(OIM)4
2+][Asp-]2) were capable of protecting 

yeast total RNA from RNase A degradation. Reversed-phase ion-pair liquid chromatography was 

used to investigate the RNase A extraction efficiency of the MILs to elucidate the preservation 

mechanism. Anion-exchange high-performance liquid chromatography (HPLC) and agarose gel 

electrophoresis were used to quantitatively evaluate the recovery efficiency of yeast total RNA. 

qRT-PCR was used to evaluate the structural integrity of mRNA from the preserved yeast total 

RNA.  

4.3 Result and Discussion 

4.3.1 Partitioning of RNA to MILs 

MILs 1-3 (Table 4.1) were initially chosen for RNA extraction and preservation as they 

have been previously used for DNA extraction.36,39 Two other MILs (4 and 5) incorporating 

aromatic moieties were also investigated. After a 60 min single-droplet extraction (SDE), the 

yeast total RNA extracted by the MILs was recovered by a liquid–liquid extraction (LLE) 

method using ethyl acetate and Tris-HCl/ ethylenediaminetetraacetic acid (EDTA) buffer prior to  
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Table 4.1 Chemical formula and structures of MILs 1-7 that were investigated in this study. 

 

 

 

MIL Chemical Formula Structure 

1 [P66614
+][Co(hfacac)3

-] 

 

2 [P66614
+][Ni(hfacac)3

-] 

 

3 [P66614
+][Mn(hfacac)3

-] 

 

4 [P66614
+][Co(Phtfacac)3

-] 

 

5 [P66614
+][Ni(Phtfacac)3

-] 

 
 



www.manaraa.com

64 

 

Table 4.1 (continued)   

MIL Chemical Formula Structure 

6 [Co(OIM)4
2+][Glu-]2 

 

7 [Co(OIM)4
2+][Asp-]2 

 
 

analysis. Different LLE buffer compositions were tested and optimized to maximize the recovery 

of RNA. Tris-HCl concentrations of 40, 80, 160, and 320 mM, EDTA concentrations of 1, 2, and 

3 mM, and pH 7 and 8 were investigated for the RNA back-extraction. Consequently, a LLE 

buffer consisting of 160 mM Tris-HCl, 2 mM EDTA, and pH 8 was chosen as it afforded the 

highest RNA recovery. An external calibration curve for yeast total RNA was established and 

used to calculate the RNA concentration in aqueous solution (Figure C1 of Appendix C). The 

extraction efficiency (Ee) of MILs was determined by comparing the total RNA concentration 

before (Cstd) and after (Cext) extraction using Equation (4.1). 

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐸𝑒%) = (1 −
𝐶𝑒𝑥𝑡

𝐶𝑠𝑡𝑑
) × 100%     Equation (4.1) 
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As shown in Figure C2, MIL 4 exhibited the highest Ee (72.79 ± 5.66%) of MILs 1-5, 

close to double the Ee of MIL 1 (39.34 ± 2.65%) though they have the same metal center and 

cation in their chemical structures. In addition, MIL 5 exhibited an Ee (33.12 ± 3.64%) higher 

than that of MIL 2 (21.02 ± 2.68%). The reason for this dramatic increase in the Ee could be due 

to the aromatic moieties in MILs 4 and 5, which may interact via π-π stacking interaction with 

the exposed bases in RNA.40 A positive control and a no reverse transcriptase (NRT) control 

were performed together. As shown in Figure 4.1, mRNA recovered from MILs 1-3 produced 

complementary DNA (cDNA), indicating intact mRNA. Subsequently, the cycle of 

quantification (Cq) values generated by qRT-PCR were compared with the positive control 

(33.03). The Cq value is related to the amount of cDNA and each decrease of one Cq value 

represents a 2-fold increase in the mass of nucleic acid. MIL 1 and 3 did not show a significant 

increase in the Cq value (MIL 1: 34.00, MIL 2: 36.31, MIL 3: 34.13), suggesting only limited 

RNA loss during the extraction and recovery process. As an example, mRNA recovered from 

MIL 1 produced approximately 49% less cDNA than the positive control. The nonamplified 

NRT control ensured that there was no false-positive amplification caused by leftover cDNA 

sequences in the total yeast RNA. Based on these experiments, MILs 1, 4, and 5 were chosen to 

further examine their preservation ability. 

Initially, an identical RNA extraction procedure using MILs 1, 4 and 5 was performed 

with a RNA aqueous solution containing 500 ng yeast total RNA. The biphasic mixtures were 

stored for another 6 h before recovery. In addition, another 500 ng of yeast total RNA was 

directly stored for 6 h at -20 °C and used as a positive control. As shown in Figure 4.2, neither 

qRT-PCR or agarose gel electrophoresis showed a significant amount of RNA recovered from 

MIL 5. However, a portion of mRNA was recovered from MIL 1, as demonstrated by a Cq value  
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Figure 4.1 Representative qRT-PCR amplification of cDNA following extraction of 100 ng of 

RNA with 5 µL of MILs 1-3 and LLE recovery. Positive control: recovery of 100 ng of RNA by 

LLE. 

 

of 38.82. MIL 4 afforded a higher mRNA recovery producing a Cq value of 34.86, 

approximately 16-times greater than MIL 1. Agarose gel electrophoresis also indicated that MIL 

4 exhibited a superior ability to preserve extracted RNA from degradation compared to the other 

two MILs. Comparing the results shown in Figure 4.2 to Figure C2, the MIL with a higher 

extraction efficiency produced a lower Cq value, except for MIL 5. Surprisingly, MIL 5 

produced the highest Cq value (no amplification in 40 cycles) and no bright cDNA band was 

observed in the agarose gel, suggesting that the metal center in the MIL structure may play a role 

in extraction as well as recovery of nucleic acid.41 In addition, the amount of RNA recovered 

from MILs 1, 4, and 5 was no better than the positive control (29.11). The yeast total RNA 

recovered from MILs 1, 4, and 5 was not able to be detected by either HPLC or qRT-PCR after 

preservation at room temperature for 24 h (Figure C3). While these results are encouraging,  
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additional conditions must be explored to increase the stability and preservation time of RNA in 

MILs.  

 

Figure 4.2 a) Representative qRT-PCR amplification of cDNA following preservation of 500 ng 

of RNA for 6 hours. b) Agarose gel electrophoresis of cDNA after qRT-PCR amplification (left 

lane: 100 bp DNA ladder, New England BioLabs). 

 

4.3.2 Degradation of RNA under Various Conditions 

To further investigate the preservation process of RNA in MILs, MIL 4 was chosen to 

examine additional conditions as it possessed the highest Ee of the MILs previously tested. 

Initially, sodium dodecyl sulfate (SDS) was incorporated in the yeast total RNA standard 

solution based on previous studies and commonly used RNA preservation methods.8,17 

Consequently, SDS increased the stability of yeast total RNA extracted by MIL 4. RNA could be 

recovered and detected by qRT-PCR after a 1-day preservation period, as shown in Table 4.2. 

However, the RNA still suffered from degradation after a 3-day storage period as no 

amplification was detected by qRT-PCR. In addition, as RNA can be degraded at a relatively 

faster rate in aqueous solution than in an anhydrous environment,16 the presence of water is 

considered an essential component during RNA degradation. Therefore, removing water from 

the biphasic mixture after the extraction process by directly pipetting out was also investigated. 
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As shown in Table 4.2, the amount of recovered RNA from MIL 4 dramatically increased when 

compared to the previous experiment where water remained in contact with MIL after extraction. 

In addition, other methods of water removal such as applying vacuum did not significantly affect 

the amount of RNA recovered. In comparison, Table 4.2 reveals that no amplification was 

detected for the negative control where RNA was directly stored in aqueous solution at room 

temperature for a period of 1 day. A possible explanation of this observation may be that the 

extracted nucleic acid remains on the surface of the MIL. The contact between RNA and water 

leads to an increase in the degradation rate. Another possible explanation was considered that the 

degradation of RNA in the aqueous phase may shift the equilibrium in the biphasic system and 

cause more RNA to be degraded. Although removal of water can increase the preservation time 

and improve stability, RNA directly preserved by the MIL cannot be detected by the qRT-PCR 

after a 3-day preservation period (Table 4.2). 

Table 4.2 Comparison of the RNA preservation conditions of using 0.1% SDS and the 

separation of MIL 4 from the aqueous phase.  

0.1% SDS Aqueous phase  
Preservation 

time (days) 
Cq value 

✓ ✓ (remained) 1 36.45 

✓ ✓ (remained) 3 no amplification 

✕ ✕ (separated) 1 27.76 

✕ ✕ (separated) 3 no amplification 

✓ ✕ (separated) 1 33.06 

✕ ✓ (remained) 1 no amplification 

 

4.3.3 PPG-2000 Enhances Preservation of RNA in MILs 

A number of polymers such as polyethylene glycol (PEG), PPG, and 

polyvinylpyrrolidone (PVP) have been used to vary the partitioning of various compounds 

including nucleic acid and proteins between the phases in a two-phase system.42 In order to 

increase the preservation time of RNA, PPG-2000 was introduced as a hydrophobic supporting 
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solvent for RNA preservation. More specifically, MIL 4 was dissolved in PPG-2000 in a 1:5 

(v:v) ratio before the yeast total RNA extraction process. LLE using ethyl acetate and Tris-

HCl/EDTA buffer was no longer effective because of the presence of PPG-2000. Thus, an 

ethanol precipitation method was used to recover the yeast total RNA from the MIL/PPG-2000 

phase. As a result, the amount of RNA recovered from MIL 4/PPG-2000 increased dramatically. 

A direct comparison of the amount of yeast total RNA recovered from MIL/PPG-2000 revealed a 

4.92 times higher amount of RNA recovered from the MIL, as shown in Figure C4. To study the 

effect of PPG-2000, an additional experiment was performed using the same procedure with 

PPG-2000 but without MILs. As shown in Figure C5, the PPG-2000 had a very limited effect on 

extraction efficiency of yeast total RNA, confirming its role as a supporting medium for MIL-

based extraction. Furthermore, the recovery was determined using Equation (4.2) using the 

HPLC peak area of recovered RNA (Are), RNA standard (Astd), the volume of resuspended 

DEPC-treated water (Vw), and RNA standard (Vstd). Although the recovery of RNA varied from 

MIL 1 (0.66% RNA was recovered after 3 days) and MIL 4 (1.00% RNA was recovered after 3 

days), the preservation time had a significant increase after applying PPG-2000. As shown in 

Figure 4.3, preserved RNA could still be detected by the qRT-PCR and agarose gel 

electrophoresis after a 15-day preservation period. In contrast, the RNA directly stored in water 

was completely degraded after 7 days. 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) =  
𝐴𝑟𝑒 × 𝑉𝑤

𝐴𝑠𝑡𝑑 × 𝑉𝑠𝑡𝑑
× 100%     Equation (4.2) 
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Figure 4.3 qRT-PCR amplification and agarose gel electrophoresis of cDNA after preserving 5 

µg of RNA in MIL 4/PPG-2000 for 7 and 15 days (a, b), MIL 1/PPG-2000 for 3 and 7 days (c, 

d).  

 

4.3.4 RNA Preservation against RNase A 

As mentioned previously, nucleic acid preservation in the presence of endonucleases is a 

significant challenge during sample preparation. In particular, ubiquitous RNases can degrade 

RNA instantly. To determine if MIL/PPG-2000 could prevent RNA from endonuclease 

degradation, RNase A was introduced into the system before extraction. As shown in Figure C6, 

no RNA was recovered from either MIL 1/PPG-2000 or MIL 4/PPG-2000 in the presence of 

RNase A.  
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In order to reduce the degradation caused by RNase A, optimized conditions were tested. 

Consequently, no amplification was observed by qRT-PCR after a 1-h incubation of RNase A 

followed by a 1-h extraction of yeast total RNA though the experimental conditions for RNA 

preservation up to 15 days period were applied. Furthermore, the addition of 0.1% SDS solution 

did not improve RNA preservation, as shown in Figure C6.  

Inspired by the work of Freire and co-workers35 which incorporated amino acids in the 

chemical structure of ILs, MIL 6 and 7 were synthesized and investigated. The extraction and 

preservation steps were performed using the experimental conditions previously described with 

an additional step of spiking RNase A into the MIL/PPG-2000 system. Consequently, a 

significant amount of RNA was recovered from both MIL 6/PPG-2000 (22.01% recovery) and 

MIL 7/PPG-2000 (12.61% recovery), as shown in Figure 4.4. Although the qRT-PCR results in 

Figure C7 revealed high Cq values which should represent a low amount of cDNA, these values 

from the experiments could be due to MIL moieties in the RNA precipitate inhibiting the qPCR 

amplification rather than insufficient preservation. To test this assumption, agarose gel 

electrophoresis experiments were performed by directly loading recovered RNA samples. The 

agarose gel electrophoresis results in Figure 4.5 demonstrated the preservation of RNA. Bands 

can be observed even without performing an amplification step, indicating a high quantity of 

RNA recovery.  
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Figure 4.4 HPLC quantification of 5 µg of RNA recovered from MIL 6/PPG-2000 spiked with 4 

µg RNase A (orange) and MIL 7/PPG-2000 spiked with 4 µg RNase A (blue). 

 

Because some ILs may play a role in the preservation of nucleic acids by destabilizing 

endonucleases,43 the partitioning of RNase A to MILs was further investigated by reversed-phase 

ion-pair liquid chromatography. MILs 1, 4, 6, and 7 were tested because of their advanced 

preservation ability of yeast total RNA. As shown in Figure C8, the amounts of RNase A 

extracted by MILs was not significant at first but had a slowly increase within 4 h. This suggests 

that the mechanism of RNA preservation is mainly due to the RNA-MIL interaction. However, 

the endonuclease destabilization by the MILs may promote the preservation as well if the 

extraction time increased. Compared with other MILs, MIL 6 and 7 exhibited a superior ability 

in protecting RNA from RNase A degradation. Furthermore, the recovered RNA can be detected 

by agarose gel electrophoresis even after 24 h incubation in the presence of RNase A (Figure 

4.5). 
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Figure 4.5 Effect of RNase A on RNA preservation within a) MIL 6/PPG-2000 for 2 hours and 

MIL 7/PPG-2000 for 2 hours. b) MIL 6/PPG-2000 for 24 hours and MIL 7/PPG-2000 for 24 

hours. Left lane of each agarose gel: 100 bp DNA ladder (New England BioLabs). 
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4.4 Experimental Section 

4.4.1 Reagents and Materials 

LC-MS grade acetonitrile (≥ 99.9%), hexane, mixture of isomers (≥ 98.5%), methanol (

≥ 99.8%), chloroform (≥ 99.8%), isoamyl alcohol (≥ 98%), ethyl acetate (≥ 99.5%), water 

(DEPC-treated and sterile filtered), trifluoroacetic acid (99%), EDTA (99.4 - 100.06%), 

poly(propylene glycol) (PPG, average Mn ≈ 2000), liquified phenol (≥ 89.0%), cobalt(II) 

chloride (97%), silver nitrate (≥ 99.0%), sodium dodecyl sulfate (99%), magnesium chloride 

(99.0 - 102.0%), L-glutamic acid, L-aspartic acid, yeast synthetic drop-out medium, Amberlite 

IRN78 hydroxide form, and acid-wash glass beads were purchased from Sigma Aldrich (St. 

Louis, MO, USA). Ethyl ether (≥ 99%) was purchased from Avantor (Center Valley, PA, USA). 

1,1,1,5,5,5-Hexafluoroacetylacetone (99%), 4,4,4-trifluoro-1-phenyl-1,3-butanedione (99%), 

glycerol (99+%), and nickel(II) chloride (98%) were purchased from  Acros Organics (Morris, 

NJ, USA). Tris(hydroxymethyl)aminomethane (ultra pure) and 

tris(hydroxymethyl)aminomethane hydrochloride (≥ 99.0%) were purchased from RPI (Mount 

Prospect, IL, USA). Sodium hydroxide, glucose (dextrose anhydrous), agarose, sodium chloride, 

sodium hydroxide, sodium acetate, dimethylsulfoxide (DMSO), acetic acid, and ammonium 

hydroxide were purchased from Fisher Scientific (Fair Lawn, NJ, USA). The SsoAdvanced 

Universal SYBR Green Supermix was purchased from Bio-Rad Laboratories (Hercules, CA, 

USA). Manganese(II) chloride tetrahydrate (98.0 - 101.0%) was purchased from Alfa Aesar 

(Ward Hill, MA, USA). Ethanol (200 proof) was purchased from Decon Labs, Inc. (King of 

Prussia, PA, USA). Octylimidazole (98%) was purchased from IOLITEC (Tuscaloosa, AL, 

USA). The Difco yeast nitrogen base w/o amino acid was purchased from Becton Dickinson 

(Sparks, MD, USA). RQ1 RNase-Free DNase I was purchased from Promega (Madison, WI, 
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USA). The SuperScript III Reverse Transcriptase Kit and SYBR Safe DNA gel stain were 

purchased from Invitrogen (Carlsbad, CA, USA). RNase A (from bovine pancreas) was 

purchased from Roche (Mannheim, Germany). All primers were purchased from Integrated 

DNA Technologies (Coralville, IA, USA). 

4.4.2 MIL Synthesis 

The chemical structures of all MILs that were examined in this study are shown in Table 

4.1. Among them, the [P66614
+][Co(hfacac)3

-], [P66614
+][Ni(hfacac)3

-], [P66614
+][Mn(hfacac)3

-], 

[P66614
+][Co(Phtfacac)3

-], and [P66614
+][Ni(Phtfacac)3

-] MILs were synthesized according to the 

previously published procedures.37,44 The [Co(OIM)4
2+][Cl-]2 salt was synthesized based on the 

previously published procedures.45,46 Each equivalent of the salt was dissolved in methanol, and 

an anion-exchange reaction was performed in a column filled with 4-6 equiv of the Amberlite 

IRN78 resin in the hydroxide form. The eluent was reacted with 2.2 equiv of glutamic acid or 

aspartic acid at room temperature overnight to obtain the [Co(OIM)4
2+][Glu-]2 and 

[Co(OIM)4
2+][Asp-]2 MIL solutions, respectively. The residual neutral amino acid was 

crystallized in cold acetonitrile and removed by filtration.   

The [P66614
+][Co(hfacac)3

-], [P66614
+][Ni(hfacac)3

-], [P66614
+][Mn(hfacac)3

-], 

[P66614
+][Co(Phtfacac)3

-], and [P66614
+][Ni(Phtfacac)3

-] MILs were synthesized by reacting 10 

mmol of ammonium hydroxide with 10 mmol of hexafluoroacetylacetone or 4,4,4-trifluoro1-

phenyl-1,3-butanedione. Subsequently, 3.3 mmol of cobalt(II) chloride hexahydrate, nickel(II) 

chloride hexahydrate, or manganese(II) chloride tetrahydrate were added and reacted for 24 h at 

room temperature. The [NH4
+][M(hfacac)3

-] and [NH4
+][M(Phtfacac)3

-] salt products were 

washed with water several times and subsequently reacted with 1 mmol of purified [P66614
+][Cl-] 

in methanol for 24 h at room temperature. The MIL products in diethyl ether solution were 

washed with deionized water and dried at 50 °C overnight under reduced pressure.  
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4.4.3 Yeast Total RNA Preparation 

The total RNA and mRNA samples were both obtained from yeast cells (BY4735). The 

first generation of yeast cells was transferred into a 100 mL volume of the liquid medium (0.67% 

yeast nitrogen base, 0.2% synthetic dropout medium, and 2% glucose) and incubated at 300 rpm 

for approximately 2 days at 30 °C until OD600 > 1.0 (the optical density of the yeast cell 

suspension measured at 600 nm). After incubation, the yeast cell suspension was transferred into 

two separate 50 mL centrifuge tubes and centrifuged at 3700 rpm for 5 min at 4 °C. The 

precipitated cells were washed with DEPC-treated water and centrifuged under the previously 

described condition. The washed cells were then resuspended in 3 mL (1 volume) RNA 

extraction buffer which consisted of 50 mM Tris-HCl, 10 mM EDTA, and 0.1 M NaCl, at pH 7.5 

with 5% SDS. One volume of denaturing buffer (phenol (pH 4): chloroform: isoamyl alcohol, 

v/v/v = 49.5:49.5:1) was added to the resuspended cells along with 1 g of acid-washed glass 

beads. The mixture was incubated at room temperature for 6 min and vortexed at high speed for 

2 min. The suspension was centrifuged, and the supernatant carefully transferred to a new tube. 

Another volume of denaturing buffer was added and vortexed at high speed for 2 min. After 

centrifugation, the supernatant was carefully transferred to a new tube. The supernatant was 

extracted with one volume of denaturing buffer and centrifuged before transferring to another 

new tube. Subsequently, the chloroform: isoamyl alcohol (v/v = 24:1) buffer was added, and the 

tubes were vortexed at high speed for 2 min to remove the residual phenol in the supernatant. For 

each volume of RNA solution, a 0.1 volume of 3 M sodium acetate (pH 5.2) and 3 volumes of 

iced ethanol stored at -20 °C were added to the aqueous layer. The suspension was incubated at -

20 °C for at least 1 h to precipitate the nucleic acid. The precipitate was washed with 70% 

ethanol after centrifugation and resuspended in DEPC-treated water. The obtained yeast total 

RNA was further treated with DNase I in 1× Reaction Buffer (New England BioLabs) for 30 min 
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at 37 °C to remove genomic DNA. DNase I was inactivated by an addition of 2 mM EGTA at 65 

°C for 10 min subsequently, and the solution was stored at -80 °C. Eventually, the concentration 

of the yeast total RNA solution was analyzed using a NanoDrop Spectrophotometer (Thermo 

2000c). 

4.4.4 qRT-PCR Conditions 

The reverse transcription reaction was performed using a SuperScript III Reverse 

Transcriptase Kit (Invitrogen). The reaction mix consisted of 4 µL of 5× First-Strand Buffer, 1 

µL of 10 µM reverse primer (5'-TAC CGG CAG ATT CCA AAC CC-3'), 1 µL of 0.1 M DTT, 1 

µL of 10 mM dNTP, 1 µL of SuperScript III RT (200 U/µL), RNA sample solution, and Milli-Q 

water to yield a 20 µL reaction mix. The thermal protocol for all reaction mixes was as follows: 

65 °C for 5 min, 4 °C for 5 min, 45 °C for 60 min, 70 °C for 15 min, and hold at 4 °C at the end. 

After the reverse transcription reaction, 1-2 µL of the solution was subjected to a qPCR reaction 

mix which consisted of 10 µL of SsoAdvanced Universal SYBR Green Supermix (2×), 2.6 µL of 

50 mM MgCl2, 1 µL of DMSO, 0.6 µL of 10 µM forward primer (5'-GAA ATG CAA ACC 

GCT GCT CA-3'), 0.6 µL of 10 µM reverse primer, and 3.2-4.2 µL of Milli-Q water (20 µL for 

each reaction mix). The thermal cycling protocol for the qPCR was as follows: an initial 

denaturation step of 5 min at 95.0 °C followed by 40 cycles of 10 s at 95.0 °C and 30 s at 64.0 

°C. 

4.4.5 Agarose Gel Electrophoresis Conditions 

A 0.8% agarose gel containing 5% SYBR Safe DNA Gel Stain (10,000×) was used for 

agarose gel electrophoresis. A volume of 20 µL of either the cDNA generated by reverse 

transcription or the RNA was pretreated with 4 µL of 30% glycerol before loading on the gel. 

Agarose gel electrophoresis was carried out for 30 min at 125 V with 1× TAE buffer. 
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4.4.6 LLE and Recovery of the RNA Sample 

A 5 µL volume of MIL was added directly to the RNA sample solution, and the mixture 

was incubated without stirring at room temperature for approximately 60 min. The aqueous 

phase was then separated and prepared for HPLC injection to determine the extraction efficiency 

of RNA, while the MIL phase was separated and dissolved in 25 µL of ethyl acetate. The RNA 

in the MIL phase was recovered into the aqueous phase by adding 25 µL of DEPC-treated water 

or 25 µL of LLE buffer (160 mM Tris-HCl, 2 mM EDTA, pH 8), and the biphasic mixture was 

vortexed for 1 min. A 12 µL volume of the aqueous phase was subjected to qRT-PCR. The 

generated and amplified cDNA was further analyzed by agarose gel electrophoresis. A positive 

control was performed using the same procedure without the MIL present. 

4.4.7 Preservation of RNA within MILs 

A 2 µg mass of RNA in aqueous solution or 0.1 % SDS solution was extracted by 5 µL of 

MIL for approximately 60 min. Two different preservation conditions were investigated: (1) the 

biphasic mixture was directly stored at room temperature or -20 °C and (2) the aqueous phase 

was carefully removed before the MIL phase was stored at room temperature or -20 °C. 

Subsequently, the remaining total RNA was recovered by LLE, as previously described, and 

analyzed by qRT-PCR. Additionally, to increase the preservation time, a 5 µL volume of MIL 

was dissolved in 25 µL of PPG-2000 before the extraction and preservation of a 5 µg mass of 

RNA aqueous solution. The aqueous phase was carefully removed subsequently, and the 

MIL/PPG-2000 phase was stored at room temperature or -20 °C for 7- to 15-day preservation 

period. Afterward, 150 µL of iced ethanol and 5 µL of 3 M sodium acetate (pH 5.2) was added to 

precipitate the remaining RNA. The solution was kept at -20 °C for 1 to 2 h and centrifuged at 

15,000 rpm for at least 10 min. After carefully removing the supernatant, the RNA was 
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resuspended with DEPC-treated water followed by downstream analysis by HPLC, qRT-PCR, or 

agarose gel electrophoresis. 

4.4.8 Preservation of RNA from RNase A 

The RNA preservation experiments were performed by the previously described methods 

with the addition of RNase A. A 5 µL volume of MIL was initially dissolved in 25 µL of PPG-

2000, followed by 4 µL of 1 µg/µL RNase A solution being spiked with MIL/PPG-2000. After 

an incubation time of 60 min, the aqueous phase was removed, and 5 µg of RNA sample solution 

was added and incubated for 60 min. The aqueous phase was carefully removed, and total RNA 

was recovered by ethanol precipitation and resuspended in DEPC-treated water. A negative 

control was performed using the same procedure without MILs. 

4.4.9 Partitioning Behavior of RNA and MILs 

The standard RNA solution used in these experiments was a diluted 10 ppm yeast total 

RNA solution. SDE was performed with 1 µL of MIL and 50 µL of standard solution to 

determine the partitioning behavior. After 1-h extraction, the residual aqueous solution was 

analyzed by anion-exchange HPLC using a Shimadzu LC-20AT HPLC chromatograph 

(Columbia, MD, USA) with a multiwavelength UV-vis detector and separated on a 35 × 4.6 mm 

i.d. × 2.5 μm TSKgel DEAE-NPR anion exchange column with a 5 × 4.6 mm i.d. × 5 μm 

TSKgel DEAE-NPR guard column (Tosoh Bioscience, King of Prussia, PA). Mobile phase A 

consisted of 20 mM Tris-HCl (pH 7) and mobile phase B consisted of 1 M NaCl and 20 mM 

Tris-HCl (pH 7). RNA was detected at 260 nm and the amount of RNA was determined using an 

external calibration curve. Gradient elution was performed with the following program: 0% B 

from 0 to 2 min, increased from 0 to 5% B from 2 to 9 min, increased to 50% B from 9 to 10 

min, increased to 100% B from 10 to 15 min, held at 100% B from 15 to 20 min, decreased from 

100 to 0% from 20 to 22 min, and held at 0% from 22 to 30 min. 
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4.4.10 Partitioning Behavior of RNase A and MILs 

A 100 µL volume of 1 µg/µL RNase A solution was extracted by 1 µL of MILs using the 

same SDE method described in the previous experiments. After 1-h extraction, the residual 

aqueous solution was injected onto a Shimadzu LC-20AT HPLC with a multiwavelength UV-vis 

detector and separated by a 50 × 4.6 mm i.d. × 2.7 μm Poroshell 120 EC-C18 reverse phase 

column (Agilent, Santa Clara, CA, USA). Mobile phase A consisted of 0.1% TFA/H2O, and 

mobile phase B consisted of 0.07% TFA/ACN. Gradient elution was performed with the 

following program: increased from 5 B to 100% B from 0 to 20 min, held at 100% B from 20 to 

30 min, and decreased from 100 to 5% B from 30 to 40 min. 

4.5 Conclusions 

In this study, hydrophobic MILs were prepared and applied as solvents to extract and 

preserve yeast total RNA from aqueous solution. RNA was able to be preserved for a period of 

15 days to facilitate recovery using the [P66614
+][Co(hfacac)3

-] and [P66614
+][Co(Phtfacac)3

-] MILs 

with the aid of an additional dispersion of PPG-2000. Although the recovery was relatively low, 

the recovered RNA was able to be analyzed by HPLC, qRT-PCR, and agarose gel 

electrophoresis. In addition, the [Co(OIM)4
2+][Glu-]2 and [Co(OIM)4

2+][Asp-]2 MILs 

demonstrated the capability of extracting and protecting yeast total RNA from RNase A 

degradation simultaneously, as determined by HPLC and agarose gel electrophoresis. The 

extraction efficiency of RNase A was found to be lower than RNA, suggesting that the MIL 

solvent provides an anhydrous microenvironment to prevent RNA from interacting with RNase 

A. This study offers a new method for RNA preservation and can be highly beneficial for in-field 

biological sample preparation and storage. Ongoing studies are focused on improving the 

recovery, in-depth study of preservation mechanism, alleviating qRT-PCR inhibition caused by 

MIL moieties, and further increasing the preservation time in the presence of RNase A. 
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CHAPTER 5.    GENERAL CONCLUSIONS 

This thesis summarized the application of ILs and MILs in nucleic acid analysis. ILs and 

MILs in this study were investigated to improve the efficiency of DNA/RNA analysis and 

overcome drawbacks to conventional methods. They demonstrate the superior capability for 

biological sample preparation and analysis. 

Chapter 2 introduces a method using ITO or DTO probes loading to MIL supports to 

extract and enrich specific DNA sequences from interfering sequences. A series of ITO/DTO 

probes with various hydrophobic and fluorophilic functional groups in the cation and anion 

moieties were investigated for the sequence-specific extraction with the [P66614
+][Mn(hfacac)3

−] 

and [P66614
+][Mn(Phtfacac)3

−] MIL supports. The DTO with two alkyl groups (C8) performed the 

best loading ability with MIL among other probes. Furthermore, the DTO-MIL system was 

demonstrated that is more efficient of extracting target DNA from solutions containing single 

nucleotide variants than a commercial magnetic bead-based approach.  

Chapter 3 optimizes the ITO/DTO-MIL method and expends it to more complex sample 

matrices including diluted plasma and diluted blood. Various DTO probes, MILs, extraction, and 

desorption conditions were studied to maximize the efficiency of this method. The target DNA 

sequences can be captured even at femtomolar level by [ADIM+]2-KRAS 2[Br−] DTO and 

[ABzIM+]-KRAS [Br−] ITO in the presence of interfering biomolecules. The improved sequence-

specific extraction method can be potential in the field of low-amount DNA detection.  

Chapter 4 describes a use of MIL solvents to extract and preserve RNA from aqueous 

solution. The [P66614
+][Co(hfacac)3

−] and [P66614
+][Co(Phtfacac)3

−] MILs were able to preserve 

RNA for a period of 15 days at room temperature. In addition, RNA was protected from RNase 

A degradation within the [Co(OIM)4
2+][Glu−]2 and [Co(OIM)4

2+][Asp−]2 MILs. The advantages 
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of this novel method include simplifying the extraction and preservation procedures and 

minimizing the risk of nuclease contamination, which make it highly beneficial for in-field 

biological sample preparation and storage. 
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APPENDIX A.    SUPPLEMENTAL INFORMATION ACCOMPANYING CHAPTER 2 

Synthesis of magnetic ionic liquids 

First, 30 mL of ethanol (200 proof) were used to dissolve 10 mmol of ammonium 

hydroxide in a 100 mL round flask. The flask was sealed with a rubber septum and 10 mmol of 

hexafluoroacetylacetone (hfacac) or 4,4,4-trifluoro-1-phenyl-1,3-butanedione (PhCF3acac) were 

added dropwise to the mixture using a syringe. After the white vapor settled, 3.3 mmol of 

MnCl2·4H2O were added and the reaction was stirred at room temperature overnight. Next, the 

solvent was evaporated in vacuo and 10 mL of diethyl ether were used to dissolve the crude 

reaction products. The solution was then passed through filter paper if precipitation happened, 

transferred into a separatory funnel, and the crude products were washed with 20 mL aliquots of 

deionized water 5 to 10 times until the aqueous fraction yielded no precipitate upon addition of 

AgNO3 solution. Next, the diethyl ether was evaporated in vacuo and the metal salt was dried at 

50 °C overnight under reduced pressure. For each 1 mmol of metal salt, 1 mmol of 

trihexyl(tetradecyl)phosphonium chloride ([P66614
+][Cl−]) was added and the mixture was 

dissolved with approximately 30 mL of methanol. The reaction mixture was stirred at room 

temperature overnight. After evaporating the solvent, the products were redissolved in diethyl 

ether and transferred into a separatory funnel, washed with 20 mL of deionized water 5 to 10 

times, and tested with AgNO3 solution until the aqueous fractions yielded no visible precipitate. 

The diethyl ether phase was evaporated in vacuo and dried at 50 °C overnight under reduced 

pressure to yield a viscous orange [P66614
+][Mn(hfacac)3

−] or brownish orange 

[P66614
+][Mn(Phtfacac)3

−] liquid that was immiscible with water and responded to application of 

a magnetic field. 
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Synthesis of imidazolium-based ion tags 

The synthesis and characterization of the allyl-bearing ion tag moieties was undertaken as 

previously reported with slight modifications where necessary.1 Briefly, the 1-allyl-3-

hexadecylimidazolium bromide ([AHIM+][Br−]) and 1-allyl-3-decylimidazolium bromide 

([ADIM+][Br−]) salts were synthesized by reacting allylimidazole with the corresponding alkyl 

halide in 1:1.2 molar ratio in acetonitrile under reflux for 48 h. The solvent was evaporated in 

vacuo and the crude product washed with 5×20 mL aliquots of hexane. The product was then 

dried overnight in a vacuum oven at 40 °C. 

The imidazolium salts with bis[(trifluoromethyl)sulfonyl]imide ([NTf2
−]), 

perfluorobutanesulfonate ([PFBS−]), and octylsulfate ([OS−]) anions were prepared by metathesis 

reactions as described previously.1 Briefly, a 1:1.2 mole ratio of imidazolium salt (bromide form) 

to LiNTf2, KPFBS, or NaOS were dissolved in water and stirred at room temperature for 16 h. 

The hydrophobic ionic liquid underwent phase separation for the [NTf2
−] and [PFBS−] analogs 

and was isolated, washed with water several times, and dried in a vacuum oven set to 60 °C. 

Since the product with [OS−] anion did not phase separate, the reaction solution was slowly 

removed by rotovap and the resulting precipitate dissolved in dichloromethane. The DCM layer 

was washed with 5 mL aliquots of water until the aqueous phase yielded no precipitate from 

addition of AgNO3. 

LC-TOFMS Characterization of ITOs/DTO 

The characterization of ITOs/DTO was performed using LC-TOFMS as previously 

reported.1 The modified oligos were separated using an Agilent Technologies 50 mm × 2.1 mm 

i.d. × 1.8 μm particle Zorbax Extend-C18 column that was equilibrated for 9 min at 0.2 mL 

min−1. A mobile phase composition of 95:5 A:B was employed, with mobile phase A consisting 

of 5 mM triethylammonium acetate (pH 7.4) and mobile phase B as acetonitrile. The following 
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gradient elution program was used: 5 % B from 0-5 min, increase to 19.4 % B from 5 to 17 min, 

increase to 35 % B from 17 to 18 min, hold at 35 % B from 18 to 20 min, decrease to 5 % B 

from 20 to 21 min. LC eluent was diverted to waste for the first 8 min of the method. The 

nebulizing gas was set to 35 psi and the flow of the drying (N2) gas was 9 L min−1 with a 

temperature of 350 °C. The capillary voltage was 4000 V. Spectra were acquired from 100-3000 

m/z at 1 Hz. 

Melt curve conditions 

Melting point analysis was performed using the melt curve function on a Bio-Rad CFX96 

Touch Real-Time PCR Detection System (Hercules, CA, USA). A 20 µL solution consisting of 

10 μL of SsoAdvanced Universal SYBR Green Supermix (2x), 5 μL of 100 mM NaCl, 0.5 nmol 

of ITO or DTO, and 0.5 nmol of the DNA complement was prepared in a PCR tube. For 

measuring melt curves of ITOs/DTOs and mismatched sequences, the DNA complement was 

replaced by 0.5 nmol of a DNA sequence with 1 or 2 mismatched bases. The temperature 

program was initiated at 90.0 °C for 5 min, was cooled at max ramp to 20.0 °C for 10 min, and 

then the temperature was increased by 0.5 °C every 5 s to 95.0 °C. Melting points were assigned 

using the CFX Manager software. 

Magnetic bead-based DNA extraction from samples containing single and double 

nucleotide variants 

Streptavidin-coated magnetic beads and biotinylated oligonucleotide probes were used to 

capture DNA targets according to the manufacturer’s instructions. To each tube, 16.9 fmol of 

biotinylated probe, 0.169 fmol of 261 bp target DNA, and either 0.169 fmol of a 20 mer 

complementary to the oligo probe, a 20 mer with 1 mismatched base, or a 20 mer with 2 

mismatched bases were added. The final volume of the sample was 50 μL with a final NaCl 

concentration of 25 mM. All qPCR tubes were heated at 90 °C for 5 min and cooled to 4 °C for 5 
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min. Next, approximately 0.13 μg of prewashed M-270 Dynabeads (washing buffer: 10mM Tris-

HCl pH = 7.5, 2 M NaCl, 1 mM EDTA) were added to the tube and all samples subjected to light 

shaking (60 rpm) for 10 min. After washing with deionized water three times, target DNA was 

desorbed from the magnetic beads with deionized water heated at 90 °C for 10 min and collected 

for qPCR amplification. 
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Figure A1. Chemical structures of the magnetic ionic liquid (MIL) supports used in this study. 

 

 

Figure A2. Chemical structure of the [ABzIM+][Br-]-ITO.  

 

 

Figure A3. Mass spectrum (negative mode) of the [P66614
+][Mn(hfacac)3

−] MIL.  
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Figure A4. Mass spectrum (positive mode) of the [P66614
+][Mn(hfacac)3

−] MIL. 

 

 

Figure A5. Mass spectrum (negative mode) of the [P66614
+][Mn(Phtfacac)3

−] MIL.  
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Figure A6. Mass spectrum (positive mode) of the [P66614
+][Mn(Phtfacac)3

−] MIL. 

 

 

Figure A7. Mass spectrum (negative mode) of the [AOIM]2[Br]-DTO. 
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Figure A8. Mass spectrum (negative mode) of the [ADIM][Br]-ITO. 

 

 

Figure A9. Melt curves for the [AOIM+]2[Br-] DTO probe and complementary DNA (blue), 1 nt 

mismatch (green), 2 nt mismatch (red), random sequence with no matching bases (purple), and 

DTO alone (orange). 
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Figure A10. Melt curves for [AOIM+][Br-] ITO probe and complementary DNA (orange), 1 nt 

mismatch (purple), and 2 nt mismatch (blue) sequences.   

 

 
Figure A11. Melt curves for unmodified oligonucleotide probe and complementary DNA 

(orange), 1 nt mismatch (purple), and 2 nt mismatch (blue) sequences. 
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Figure A12. Panel (a) shows the extracted ion chromatogram of the KRAS [AOIM+][Br−]-DTO 

with the mass spectrum (negative mode) shown in (b). Panel (c) shows the isotope distribution 

for the KRAS DTO.  

 

Table A1. Single- and double-stranded DNA loading efficiencies for the [ABzIM+][Br-]-ITO 

and the [AOIM+][Br-]-ITO on MIL supports. 

 
a Conditions: concentration of oligo/duplex: 8 ng μL−1; MIL volume: 1 μL; sample volume: 50 

μL; extraction time: 10 min; quantification method: anion-exchange HPLC with UV detection at 

260 nm. 

  

a) 

b) 

c) 

  Target Extraction Efficiency (%, n = 3) 

MIL support 

ABzIM-
tagged oligo 

(n=3) 

ssDNA 
complement 

(n=3) 

Duplex (ABzIM-ITO
+complement, n=3) 

Duplex (AOIM-ITO
+complement, n=3) 

Duplex (unmodified oligo
+complement, n=3) 

[P66614
+]

[Mn(hfacac)3-] 
20 ± 7 12 ± 5 25 ± 5 25 ± 3 2 ± 2 

[P66614
+]

[Mn(CF3Phacac)3-] 
30 ± 4 27 ± 6 40 ± 3 20 ± 5 >1 ± 1 
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Table A2. Optimization of probe:target ratio for the DTO extraction system coupled with qPCR. 

Target 

amount 

(fmol) 

DTO amount (fmol) 
DTO:target mole 

ratio 

DTO:MIL 

(fmol µL-1) 
Cq a 

16.9 845 50:1 845 26.79 

16.9 338 20:1 338 27.16 

16.9 169 10:1 169 23.63 

0.169 1.69 10:1 1.69 38.02 

0.169 0.845 5:1 0.845 33.99 

0.169 0.338 2:1 0.338 34.53 

0.169 0.169 1:1 0.169 34.97 
a Conditions: amount of target DNA: 0.169 fmol; MIL volume: 1 µL; sample volume: 50 µL; 

extraction time: 10 min; desorption time: 10 min at 90 °C quantification method: qPCR. 
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APPENDIX B.    SUPPLEMENTAL INFORMATION ACCOMPANYING CHAPTER 3 

 

Figure B1. Mass spectra (negative ion mode) of the (a) [AOIM+]2-KRAS, (b) [ADIM+]2-KRAS, 

and (c) [ABzIM+]2-KRAS DTOs. 
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Figure B2. Five-point standard curve consisting of 10-fold dilutions of KRAS using qPCR. 

 

 
Figure B3. Mass spectrum (negative ion mode) of the reaction product from attempts to 

synthesize an undecylimidazolium-modified DTO. 
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Figure B4. qPCR results for sequence-specific extraction of KRAS from (green) pure water and 

in the presence of a 20 nt (blue) complementary fragment, (yellow) 1 nt mismatch fragment, and 

(grey) 2 nt mismatch. KRAS template concentration: 7.2×107 copies µL-1, amount of [ADIM+]2-

KRAS 2[Br-] DTO relative to DNA: 5:1, amount of [AOIM+]-KRAS [PF6
-] ITO relative to DNA: 

10:1, sample volume: 50 µL, MIL volume: 1 µL; extraction time: 10 min, desorption time: 4 

min, desorption volume: 50 µL. 

 

 
Figure B5. Amount of DNA desorbed over time after performing the static extraction of KRAS 

using the (blue) [ADIM+]2-KRAS 2[Br-] DTO and (green) highest loading ITO probe while 

desorbing in different concentrations of NaCl with the (a) [P66614
+][Mn(hfacac)3

-], (b) 

[N888Bz
+][Mn(hfacac)3

-], and (c) [N888Bz
+][Mn(hfacac)2(Phtfacac)-] MILs. KRAS template 

concentration: 7.2×107 copies µL-1, amount of [ADIM+]2-KRAS 2[Br-] DTO relative to DNA: 

5:1, amount of [AOIM+]-KRAS [PF6
-] ITO relative to DNA: 10:1, sample volume: 50 µL, MIL 

volume: 1 µL; extraction time: 10 min, desorption time: 4 min, desorption volume: 50 µL. 
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Figure B6. Cq values resulting from the static extraction of KRAS using the (blue) [ADIM+]2-

KRAS 2[Br-] DTO and (green) highest loading ITO probe while desorbing in different 

concentrations of NaCl with the (a) [P66614
+][Mn(hfacac)3

-], (b) [N888Bz
+][Mn(hfacac)3

-], and (c) 

[N888Bz
+][Mn(hfacac)2(Phtfacac)-] MILs. KRAS template concentration: 7.2×107 copies µL-1, 

amount of [ADIM+]2-KRAS 2[Br-] DTO relative to DNA: 5:1, amount of [AOIM+]-KRAS [PF6
-] 

ITO relative to DNA: 10:1, sample volume: 50 µL, MIL volume: 1 µL; extraction time: 10 min, 

desorption time: 4 min, desorption volume: 50 µL. 

 

 
Figure B7. Target capture Cq values with the desorption of target DNA when desorbing into the 

qPCR buffer using the (blue) DTO and (green) ITO probes. KRAS template concentration: 

7.2×107 copies µL-1, amount of [ADIM+]2-KRAS 2[Br-] DTO relative to DNA: 5:1, amount of 

[AOIM+]-KRAS [PF6
-] ITO relative to DNA: 10:1, sample volume: 50 µL, MIL volume: 1 µL; 

extraction time: 10 min, desorption time: 4 min, desorption volume: 50 µL. 
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Figure B8. Enrichment factors (Ef) associated with the dispersive extraction of target KRAS with 

the desorption of target DNA with the (blue) DTO and (green) ITO probes. 

[P66614
+][Mn(hfacac)3

-] MIL conditions: KRAS template concentration: 2×104 copies µL-1, 

amount of [ADIM+]2-KRAS 2[Br-] DTO relative to DNA: 5:1, amount of [AOIM+]-KRAS [PF6
-] 

ITO relative to DNA: 10:1, NaCl concentration: 25 mM, sample volume: 1.0 mL, MIL volume: 

8 µL; extraction time: 3 min. [N888Bz
+][Mn(hfacac)3

-] MIL conditions: KRAS template 

concentration: 2×104 copies µL-1, amount of [ADIM+]2-KRAS 2[Br-] DTO relative to DNA: 5:1, 

amount of [ABzIM+]-KRAS [Br-]  relative to DNA: 10:1, NaCl concentration: 25 mM, sample 

volume: 1.0 mL, MIL volume: 6 µL: extraction time: 1 min. [N888Bz
+][Mn(hfacac)2(Phtfacac)-] 

MIL conditions: KRAS template concentration: 2×104 copies µL-1, amount of [ADIM+]2-KRAS 

2[Br-] DTO relative to DNA: 5:1, amount of [ABzIM+]-KRAS [Br-]  relative to DNA: 10:1, NaCl 

concentration: 25 mM, sample volume: 1.0 mL, MIL volume: 4 µL; extraction time: 1 min. 

 

 
Figure B9. Enrichment factors (Ef) resulting from the DLLME of (a) 2×103 and (b) 2×102 copies 

µL-1 KRAS using the (blue) [ADIM+]2-KRAS 2[Br-] DTO, (green) [ABzIM+]-KRAS [Br-] ITO, 

and (grey) negative control without the probe from 10-fold diluted plasma. 

[N888Bz
+][Mn(hfacac)3

-] MIL conditions: amount of DTO relative to DNA: 5:1, amount of ITO 

relative to DNA: 10:1, NaCl concentration: 25 mM, sample volume: 1.0 mL, MIL volume: 6 µL: 

extraction time: 1 min. [N888Bz
+][Mn(hfacac)2(Phtfacac)-] MIL conditions: amount of DTO 

relative to DNA: 5:1, amount of ITO relative to DNA: 10:1, NaCl concentration: 25 mM, sample 

volume: 1.0 mL, MIL volume: 4 µL; extraction time: 1 min. 
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Figure B10. Target capture Cq obtained from the capture of target DNA using the (a) [ADIM+]2-

KRAS 2[Br-] and [ABzIM+]2-KRAS 2[Br-] DTOs with the [N888Bz
+][Mn(hfacac)3

-] MIL and (b) 

[ADIM+]2-KRAS 2[Br-] and [ADIM+]2-KRAS 2[OS-] DTOs with the [P66614
+][Mn(hfacac)3

-] MIL 

from 10-fold diluted plasma. ITO/DTO-MIL method: KRAS template concentration: 7.2×107 

copies µL-1, amount of DTO relative to DNA: 5:1, sample volume: 50 µL, MIL volume: 1 µL; 

extraction time: 10 min, desorption time: 4 min, desorption volume: 50 µL. 

 

 
Figure B11. Target capture Cqs from the extraction of target DNA with the (blue) [ADIM+]2-

KRAS 2[Br-] DTO, (green) ITO, (orange) biotinylated probe, and (grey) without a DNA 

extraction probe from 2-fold diluted plasma.  ITO/DTO-MIL method: KRAS template 

concentration: 7.2×107 copies µL-1, amount of [ADIM+]2-KRAS 2[Br-] DTO relative to DNA: 

5:1, amount of [AOIM+]-KRAS [PF6
-] ITO relative to DNA: 10:1, sample volume: 50 µL, MIL 

volume: 1 µL; extraction time: 10 min, desorption time: 4 min, desorption volume: 50 µL. 

Dynabeads M-270 Steptavidin magnetic beads conditions: KRAS template concentration: 

7.2×107 copies µL-1, concentration of biotinylated probe: 7.2×108 copies µL-1, NaCl 

concentration: 25 mM, mass of magnetic beads: 10 µg; sample volume: 1.0 mL; extraction time: 

10 min; agitation rate: 250 rpm; desorption time: 10 min; desorption volume: 20 µL. 
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Figure B12. Target capture Cq values associated with the extraction of target KRAS from 

different concentrations of 10, 20, and 40-fold diluted whole blood using streptavidin-coated 

magnetic beads (orange) with and (grey) without a biotinylated probe. KRAS template 

concentration: 2×104 copies µL-1, concentration of biotinylated probe: 332 fM, NaCl 

concentration: 25 mM, mass of magnetic beads: 10 µg; sample volume: 1.0 mL; extraction time: 

10 min; agitation rate: 250 rpm; desorption time: 10 min; desorption volume: 20 µL. 

 

 
Figure B13. Target capture Cq values associated with the static extraction of KRAS using the 

(blue) DTO, (green) ITO, and (grey) without the probe from saline (154 mM). KRAS template 

concentration: 7.2×107 copies µL-1, amount of [ADIM+]2-KRAS 2[Br-] DTO relative to DNA: 

5:1, amount of [AOIM+]-KRAS [PF6
-] ITO relative to DNA: 10:1, sample volume: 50 µL, MIL 

volume: 1 µL; extraction time: 10 min, desorption time: 4 min, desorption volume: 50 µL. 
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Figure B14. Enrichment factors (Ef) from the DLLME of (a) 2×103 and (b) 2×102 copies µL-1 

KRAS using the (blue) DTO along with the extraction (grey) without any extraction probe from 

10-fold diluted blood. [P66614
+][Mn(hfacac)3

-] MIL conditions: amount of [ADIM+]-KRAS 2[Br-] 

DTO relative to DNA: 5:1, NaCl concentration: 25 mM, sample volume: 1.0 mL, MIL volume: 8 

µL; extraction time: 3 min. [N888Bz
+][Mn(hfacac)3

-] MIL conditions: amount of [ADIM+]2-KRAS 

2[Br-] DTO relative to DNA: 5:1, amount of [ABzIM+]-KRAS [Br-] relative to DNA: 10:1, NaCl 

concentration: 25 mM, sample volume: 1.0 mL, MIL volume: 6 µL: extraction time: 1 min. 
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APPENDIX C.    SUPPLEMENTAL INFORMATION ACCOMPANYING CHAPTER 4 

 

Intercept ± 

confidence 

limits 

Slope ± 

confidence 

limits 

Number 
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calibration 

levels 

Linear 

concentration 

Determination 

coefficient 

(R2) 

Standard 
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regression 

Detection 

limit 

506 ± 

1073 

13008 ± 

266 
3 

0.875 ppm - 

7 ppm 
0.9992 590 0.19 ppm 

 

Figure C1. Calibration curve of yeast total RNA in aqueous solution by anion-exchange HPLC. 
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Figure C2. Extraction efficiency of yeast total RNA using different MILs. Number of replicates 

= 3. MIL 1: 39.34% ± 2.65%, MIL 2: 21.02% ± 2.68%, MIL 3: 24.29% ± 1.41%, MIL 4: 72.79% 

± 5.66%, and MIL 5: 33.12% ± 3.64%. 

 

 
Figure C3. cDNA amplification following preservation of 500 ng of RNA by MIL 1 (red), MIL 

4 (brown), and MIL 5 (green) for 24 hours. No amplification was detected in 40 cycles. 
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Figure C4. Recovery of 400 ng RNA from aqueous phase (yellow), MIL phase (blue), and 

MIL/PPG-2000 phase (red). RNA was precipitated by ethanol at -20 °C and resuspended in 

DEPC treated water before being analyzed by HPLC. 

 

 
Figure C5. Recovery of 5 μg RNA from MIL 4/PPG-2000 for 1 day (black), MIL 4/PPG-2000 

for 3 days (red), MIL 1/PPG-2000 for 3 days (yellow), and PPG-2000 for 3 days (blue). 
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Figure C6. cDNA amplification following preservation of 2 µg of RNA with RNase A present 

for 1 hour. RNA in 0.1% SDS solution was preserved by MIL 4 (blue) and MIL 1 (yellow). RNA 

in water solution was preserved by MIL 4 (red) and MIL 1 (green). No amplification was 

detected in 40 cycles. 

 

 
Figure C7. a) cDNA amplification following preservation of 5 µg of RNA with RNase A 

present for 2 hours. RNA was recovered from MIL 6/PPG-2000 (blue), MIL 7/PPG-2000 

(orange), and water spiking with RNase A (gray). No amplification was detected in 40 cycles. 

cDNA amplification of 5 µg of RNA (green). b) Agarose gel electrophoresis of cDNA after 

amplification. 
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Figure C8. Static extraction of 24 µg RNase A using different MILs within 4 hours. Number of 

replicates = 3. The mass (µg) of RNase A was extracted by MIL 1 (orange), MIL 4 (blue), MIL 6 

(gray), and MIL 7 (yellow) in 4 hours. 
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